camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import numpy as np
import pytest
import torch
from mmdet.core.bbox import distance2bbox
from mmdet.core.mask.structures import BitmapMasks, PolygonMasks
from mmdet.core.utils import (center_of_mass, filter_scores_and_topk,
flip_tensor, mask2ndarray, select_single_mlvl)
from mmdet.utils import find_latest_checkpoint
def dummy_raw_polygon_masks(size):
"""
Args:
size (tuple): expected shape of dummy masks, (N, H, W)
Return:
list[list[ndarray]]: dummy mask
"""
num_obj, height, width = size
polygons = []
for _ in range(num_obj):
num_points = np.random.randint(5) * 2 + 6
polygons.append([np.random.uniform(0, min(height, width), num_points)])
return polygons
def test_mask2ndarray():
raw_masks = np.ones((3, 28, 28))
bitmap_mask = BitmapMasks(raw_masks, 28, 28)
output_mask = mask2ndarray(bitmap_mask)
assert np.allclose(raw_masks, output_mask)
raw_masks = dummy_raw_polygon_masks((3, 28, 28))
polygon_masks = PolygonMasks(raw_masks, 28, 28)
output_mask = mask2ndarray(polygon_masks)
assert output_mask.shape == (3, 28, 28)
raw_masks = np.ones((3, 28, 28))
output_mask = mask2ndarray(raw_masks)
assert np.allclose(raw_masks, output_mask)
raw_masks = torch.ones((3, 28, 28))
output_mask = mask2ndarray(raw_masks)
assert np.allclose(raw_masks, output_mask)
# test unsupported type
raw_masks = []
with pytest.raises(TypeError):
output_mask = mask2ndarray(raw_masks)
def test_distance2bbox():
point = torch.Tensor([[74., 61.], [-29., 106.], [138., 61.], [29., 170.]])
distance = torch.Tensor([[0., 0, 1., 1.], [1., 2., 10., 6.],
[22., -29., 138., 61.], [54., -29., 170., 61.]])
expected_decode_bboxes = torch.Tensor([[74., 61., 75., 62.],
[0., 104., 0., 112.],
[100., 90., 100., 120.],
[0., 120., 100., 120.]])
out_bbox = distance2bbox(point, distance, max_shape=(120, 100))
assert expected_decode_bboxes.allclose(out_bbox)
out = distance2bbox(point, distance, max_shape=torch.Tensor((120, 100)))
assert expected_decode_bboxes.allclose(out)
batch_point = point.unsqueeze(0).repeat(2, 1, 1)
batch_distance = distance.unsqueeze(0).repeat(2, 1, 1)
batch_out = distance2bbox(
batch_point, batch_distance, max_shape=(120, 100))[0]
assert out.allclose(batch_out)
batch_out = distance2bbox(
batch_point, batch_distance, max_shape=[(120, 100), (120, 100)])[0]
assert out.allclose(batch_out)
batch_out = distance2bbox(point, batch_distance, max_shape=(120, 100))[0]
assert out.allclose(batch_out)
# test max_shape is not equal to batch
with pytest.raises(AssertionError):
distance2bbox(
batch_point,
batch_distance,
max_shape=[(120, 100), (120, 100), (32, 32)])
rois = torch.zeros((0, 4))
deltas = torch.zeros((0, 4))
out = distance2bbox(rois, deltas, max_shape=(120, 100))
assert rois.shape == out.shape
rois = torch.zeros((2, 0, 4))
deltas = torch.zeros((2, 0, 4))
out = distance2bbox(rois, deltas, max_shape=(120, 100))
assert rois.shape == out.shape
@pytest.mark.parametrize('mask', [
torch.ones((28, 28)),
torch.zeros((28, 28)),
torch.rand(28, 28) > 0.5,
torch.tensor([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]])
])
def test_center_of_mass(mask):
center_h, center_w = center_of_mass(mask)
if mask.shape[0] == 4:
assert center_h == 1.5
assert center_w == 1.5
assert isinstance(center_h, torch.Tensor) \
and isinstance(center_w, torch.Tensor)
assert 0 <= center_h <= 28 \
and 0 <= center_w <= 28
def test_flip_tensor():
img = np.random.random((1, 3, 10, 10))
src_tensor = torch.from_numpy(img)
# test flip_direction parameter error
with pytest.raises(AssertionError):
flip_tensor(src_tensor, 'flip')
# test tensor dimension
with pytest.raises(AssertionError):
flip_tensor(src_tensor[0], 'vertical')
hfilp_tensor = flip_tensor(src_tensor, 'horizontal')
expected_hflip_tensor = torch.from_numpy(img[..., ::-1, :].copy())
expected_hflip_tensor.allclose(hfilp_tensor)
vfilp_tensor = flip_tensor(src_tensor, 'vertical')
expected_vflip_tensor = torch.from_numpy(img[..., ::-1].copy())
expected_vflip_tensor.allclose(vfilp_tensor)
diag_filp_tensor = flip_tensor(src_tensor, 'diagonal')
expected_diag_filp_tensor = torch.from_numpy(img[..., ::-1, ::-1].copy())
expected_diag_filp_tensor.allclose(diag_filp_tensor)
def test_select_single_mlvl():
mlvl_tensors = [torch.rand(2, 1, 10, 10)] * 5
mlvl_tensor_list = select_single_mlvl(mlvl_tensors, 1)
assert len(mlvl_tensor_list) == 5 and mlvl_tensor_list[0].ndim == 3
def test_filter_scores_and_topk():
score = torch.tensor([[0.1, 0.3, 0.2], [0.12, 0.7, 0.9], [0.02, 0.8, 0.08],
[0.4, 0.1, 0.08]])
bbox_pred = torch.tensor([[0.2, 0.3], [0.4, 0.7], [0.1, 0.1], [0.5, 0.1]])
score_thr = 0.15
nms_pre = 4
# test results type error
with pytest.raises(NotImplementedError):
filter_scores_and_topk(score, score_thr, nms_pre, (score, ))
filtered_results = filter_scores_and_topk(
score, score_thr, nms_pre, results=dict(bbox_pred=bbox_pred))
filtered_score, labels, keep_idxs, results = filtered_results
assert filtered_score.allclose(torch.tensor([0.9, 0.8, 0.7, 0.4]))
assert labels.allclose(torch.tensor([2, 1, 1, 0]))
assert keep_idxs.allclose(torch.tensor([1, 2, 1, 3]))
assert results['bbox_pred'].allclose(
torch.tensor([[0.4, 0.7], [0.1, 0.1], [0.4, 0.7], [0.5, 0.1]]))
def test_find_latest_checkpoint():
with tempfile.TemporaryDirectory() as tmpdir:
path = tmpdir
latest = find_latest_checkpoint(path)
# There are no checkpoints in the path.
assert latest is None
path = osp.join(tmpdir, 'none')
latest = find_latest_checkpoint(path)
# The path does not exist.
assert latest is None
with tempfile.TemporaryDirectory() as tmpdir:
with open(osp.join(tmpdir, 'latest.pth'), 'w') as f:
f.write('latest')
path = tmpdir
latest = find_latest_checkpoint(path)
assert latest == osp.join(tmpdir, 'latest.pth')
with tempfile.TemporaryDirectory() as tmpdir:
with open(osp.join(tmpdir, 'iter_4000.pth'), 'w') as f:
f.write('iter_4000')
with open(osp.join(tmpdir, 'iter_8000.pth'), 'w') as f:
f.write('iter_8000')
path = tmpdir
latest = find_latest_checkpoint(path)
assert latest == osp.join(tmpdir, 'iter_8000.pth')
with tempfile.TemporaryDirectory() as tmpdir:
with open(osp.join(tmpdir, 'epoch_1.pth'), 'w') as f:
f.write('epoch_1')
with open(osp.join(tmpdir, 'epoch_2.pth'), 'w') as f:
f.write('epoch_2')
path = tmpdir
latest = find_latest_checkpoint(path)
assert latest == osp.join(tmpdir, 'epoch_2.pth')