camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import base64
import os
import mmcv
import torch
from ts.torch_handler.base_handler import BaseHandler
from mmdet.apis import inference_detector, init_detector
class MMdetHandler(BaseHandler):
threshold = 0.5
def initialize(self, context):
properties = context.system_properties
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(self.map_location + ':' +
str(properties.get('gpu_id')) if torch.cuda.
is_available() else self.map_location)
self.manifest = context.manifest
model_dir = properties.get('model_dir')
serialized_file = self.manifest['model']['serializedFile']
checkpoint = os.path.join(model_dir, serialized_file)
self.config_file = os.path.join(model_dir, 'config.py')
self.model = init_detector(self.config_file, checkpoint, self.device)
self.initialized = True
def preprocess(self, data):
images = []
for row in data:
image = row.get('data') or row.get('body')
if isinstance(image, str):
image = base64.b64decode(image)
image = mmcv.imfrombytes(image)
images.append(image)
return images
def inference(self, data, *args, **kwargs):
results = inference_detector(self.model, data)
return results
def postprocess(self, data):
# Format output following the example ObjectDetectionHandler format
output = []
for image_index, image_result in enumerate(data):
output.append([])
if isinstance(image_result, tuple):
bbox_result, segm_result = image_result
if isinstance(segm_result, tuple):
segm_result = segm_result[0] # ms rcnn
else:
bbox_result, segm_result = image_result, None
for class_index, class_result in enumerate(bbox_result):
class_name = self.model.CLASSES[class_index]
for bbox in class_result:
bbox_coords = bbox[:-1].tolist()
score = float(bbox[-1])
if score >= self.threshold:
output[image_index].append({
'class_name': class_name,
'bbox': bbox_coords,
'score': score
})
return output