|
|
|
import argparse |
|
import os.path as osp |
|
import warnings |
|
from functools import partial |
|
|
|
import numpy as np |
|
import onnx |
|
import torch |
|
from mmcv import Config, DictAction |
|
|
|
from mmdet.core.export import build_model_from_cfg, preprocess_example_input |
|
from mmdet.core.export.model_wrappers import ONNXRuntimeDetector |
|
|
|
|
|
def pytorch2onnx(model, |
|
input_img, |
|
input_shape, |
|
normalize_cfg, |
|
opset_version=11, |
|
show=False, |
|
output_file='tmp.onnx', |
|
verify=False, |
|
test_img=None, |
|
do_simplify=False, |
|
dynamic_export=None, |
|
skip_postprocess=False): |
|
|
|
input_config = { |
|
'input_shape': input_shape, |
|
'input_path': input_img, |
|
'normalize_cfg': normalize_cfg |
|
} |
|
|
|
one_img, one_meta = preprocess_example_input(input_config) |
|
img_list, img_meta_list = [one_img], [[one_meta]] |
|
|
|
if skip_postprocess: |
|
warnings.warn('Not all models support export onnx without post ' |
|
'process, especially two stage detectors!') |
|
model.forward = model.forward_dummy |
|
torch.onnx.export( |
|
model, |
|
one_img, |
|
output_file, |
|
input_names=['input'], |
|
export_params=True, |
|
keep_initializers_as_inputs=True, |
|
do_constant_folding=True, |
|
verbose=show, |
|
opset_version=opset_version) |
|
|
|
print(f'Successfully exported ONNX model without ' |
|
f'post process: {output_file}') |
|
return |
|
|
|
|
|
origin_forward = model.forward |
|
model.forward = partial( |
|
model.forward, |
|
img_metas=img_meta_list, |
|
return_loss=False, |
|
rescale=False) |
|
|
|
output_names = ['dets', 'labels'] |
|
if model.with_mask: |
|
output_names.append('masks') |
|
input_name = 'input' |
|
dynamic_axes = None |
|
if dynamic_export: |
|
dynamic_axes = { |
|
input_name: { |
|
0: 'batch', |
|
2: 'height', |
|
3: 'width' |
|
}, |
|
'dets': { |
|
0: 'batch', |
|
1: 'num_dets', |
|
}, |
|
'labels': { |
|
0: 'batch', |
|
1: 'num_dets', |
|
}, |
|
} |
|
if model.with_mask: |
|
dynamic_axes['masks'] = {0: 'batch', 1: 'num_dets'} |
|
|
|
torch.onnx.export( |
|
model, |
|
img_list, |
|
output_file, |
|
input_names=[input_name], |
|
output_names=output_names, |
|
export_params=True, |
|
keep_initializers_as_inputs=True, |
|
do_constant_folding=True, |
|
verbose=show, |
|
opset_version=opset_version, |
|
dynamic_axes=dynamic_axes) |
|
|
|
model.forward = origin_forward |
|
|
|
if do_simplify: |
|
import onnxsim |
|
|
|
from mmdet import digit_version |
|
|
|
min_required_version = '0.4.0' |
|
assert digit_version(onnxsim.__version__) >= digit_version( |
|
min_required_version |
|
), f'Requires to install onnxsim>={min_required_version}' |
|
|
|
model_opt, check_ok = onnxsim.simplify(output_file) |
|
if check_ok: |
|
onnx.save(model_opt, output_file) |
|
print(f'Successfully simplified ONNX model: {output_file}') |
|
else: |
|
warnings.warn('Failed to simplify ONNX model.') |
|
print(f'Successfully exported ONNX model: {output_file}') |
|
|
|
if verify: |
|
|
|
onnx_model = onnx.load(output_file) |
|
onnx.checker.check_model(onnx_model) |
|
|
|
|
|
onnx_model = ONNXRuntimeDetector(output_file, model.CLASSES, 0) |
|
if dynamic_export: |
|
|
|
h, w = [int((_ * 1.5) // 32 * 32) for _ in input_shape[2:]] |
|
h, w = min(1344, h), min(1344, w) |
|
input_config['input_shape'] = (1, 3, h, w) |
|
|
|
if test_img is None: |
|
input_config['input_path'] = input_img |
|
|
|
|
|
one_img, one_meta = preprocess_example_input(input_config) |
|
img_list, img_meta_list = [one_img], [[one_meta]] |
|
|
|
|
|
with torch.no_grad(): |
|
pytorch_results = model( |
|
img_list, |
|
img_metas=img_meta_list, |
|
return_loss=False, |
|
rescale=True)[0] |
|
|
|
img_list = [_.cuda().contiguous() for _ in img_list] |
|
if dynamic_export: |
|
img_list = img_list + [_.flip(-1).contiguous() for _ in img_list] |
|
img_meta_list = img_meta_list * 2 |
|
|
|
onnx_results = onnx_model( |
|
img_list, img_metas=img_meta_list, return_loss=False)[0] |
|
|
|
score_thr = 0.3 |
|
if show: |
|
out_file_ort, out_file_pt = None, None |
|
else: |
|
out_file_ort, out_file_pt = 'show-ort.png', 'show-pt.png' |
|
|
|
show_img = one_meta['show_img'] |
|
model.show_result( |
|
show_img, |
|
pytorch_results, |
|
score_thr=score_thr, |
|
show=True, |
|
win_name='PyTorch', |
|
out_file=out_file_pt) |
|
onnx_model.show_result( |
|
show_img, |
|
onnx_results, |
|
score_thr=score_thr, |
|
show=True, |
|
win_name='ONNXRuntime', |
|
out_file=out_file_ort) |
|
|
|
|
|
if model.with_mask: |
|
compare_pairs = list(zip(onnx_results, pytorch_results)) |
|
else: |
|
compare_pairs = [(onnx_results, pytorch_results)] |
|
err_msg = 'The numerical values are different between Pytorch' + \ |
|
' and ONNX, but it does not necessarily mean the' + \ |
|
' exported ONNX model is problematic.' |
|
|
|
for onnx_res, pytorch_res in compare_pairs: |
|
for o_res, p_res in zip(onnx_res, pytorch_res): |
|
np.testing.assert_allclose( |
|
o_res, p_res, rtol=1e-03, atol=1e-05, err_msg=err_msg) |
|
print('The numerical values are the same between Pytorch and ONNX') |
|
|
|
|
|
def parse_normalize_cfg(test_pipeline): |
|
transforms = None |
|
for pipeline in test_pipeline: |
|
if 'transforms' in pipeline: |
|
transforms = pipeline['transforms'] |
|
break |
|
assert transforms is not None, 'Failed to find `transforms`' |
|
norm_config_li = [_ for _ in transforms if _['type'] == 'Normalize'] |
|
assert len(norm_config_li) == 1, '`norm_config` should only have one' |
|
norm_config = norm_config_li[0] |
|
return norm_config |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert MMDetection models to ONNX') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument('--input-img', type=str, help='Images for input') |
|
parser.add_argument( |
|
'--show', |
|
action='store_true', |
|
help='Show onnx graph and detection outputs') |
|
parser.add_argument('--output-file', type=str, default='tmp.onnx') |
|
parser.add_argument('--opset-version', type=int, default=11) |
|
parser.add_argument( |
|
'--test-img', type=str, default=None, help='Images for test') |
|
parser.add_argument( |
|
'--dataset', |
|
type=str, |
|
default='coco', |
|
help='Dataset name. This argument is deprecated and will be removed \ |
|
in future releases.') |
|
parser.add_argument( |
|
'--verify', |
|
action='store_true', |
|
help='verify the onnx model output against pytorch output') |
|
parser.add_argument( |
|
'--simplify', |
|
action='store_true', |
|
help='Whether to simplify onnx model.') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[800, 1216], |
|
help='input image size') |
|
parser.add_argument( |
|
'--mean', |
|
type=float, |
|
nargs='+', |
|
default=[123.675, 116.28, 103.53], |
|
help='mean value used for preprocess input data.This argument \ |
|
is deprecated and will be removed in future releases.') |
|
parser.add_argument( |
|
'--std', |
|
type=float, |
|
nargs='+', |
|
default=[58.395, 57.12, 57.375], |
|
help='variance value used for preprocess input data. ' |
|
'This argument is deprecated and will be removed in future releases.') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='Override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--dynamic-export', |
|
action='store_true', |
|
help='Whether to export onnx with dynamic axis.') |
|
parser.add_argument( |
|
'--skip-postprocess', |
|
action='store_true', |
|
help='Whether to export model without post process. Experimental ' |
|
'option. We do not guarantee the correctness of the exported ' |
|
'model.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
warnings.warn('Arguments like `--mean`, `--std`, `--dataset` would be \ |
|
parsed directly from config file and are deprecated and \ |
|
will be removed in future releases.') |
|
|
|
assert args.opset_version == 11, 'MMDet only support opset 11 now' |
|
|
|
try: |
|
from mmcv.onnx.symbolic import register_extra_symbolics |
|
except ModuleNotFoundError: |
|
raise NotImplementedError('please update mmcv to version>=v1.0.4') |
|
register_extra_symbolics(args.opset_version) |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
if args.shape is None: |
|
img_scale = cfg.test_pipeline[1]['img_scale'] |
|
input_shape = (1, 3, img_scale[1], img_scale[0]) |
|
elif len(args.shape) == 1: |
|
input_shape = (1, 3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = (1, 3) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
|
|
model = build_model_from_cfg(args.config, args.checkpoint, |
|
args.cfg_options) |
|
|
|
if not args.input_img: |
|
args.input_img = osp.join(osp.dirname(__file__), '../../demo/demo.jpg') |
|
|
|
normalize_cfg = parse_normalize_cfg(cfg.test_pipeline) |
|
|
|
|
|
pytorch2onnx( |
|
model, |
|
args.input_img, |
|
input_shape, |
|
normalize_cfg, |
|
opset_version=args.opset_version, |
|
show=args.show, |
|
output_file=args.output_file, |
|
verify=args.verify, |
|
test_img=args.test_img, |
|
do_simplify=args.simplify, |
|
dynamic_export=args.dynamic_export, |
|
skip_postprocess=args.skip_postprocess) |
|
|
|
|
|
bright_style, reset_style = '\x1b[1m', '\x1b[0m' |
|
red_text, blue_text = '\x1b[31m', '\x1b[34m' |
|
white_background = '\x1b[107m' |
|
|
|
msg = white_background + bright_style + red_text |
|
msg += 'DeprecationWarning: This tool will be deprecated in future. ' |
|
msg += blue_text + 'Welcome to use the unified model deployment toolbox ' |
|
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' |
|
msg += reset_style |
|
warnings.warn(msg) |
|
|