camenduru's picture
thanks to show ❤
3bbb319
from argparse import ArgumentParser
import numpy as np
import requests
from mmdet.apis import inference_detector, init_detector, show_result_pyplot
from mmdet.core import bbox2result
def parse_args():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('model_name', help='The model name in the server')
parser.add_argument(
'--inference-addr',
default='127.0.0.1:8080',
help='Address and port of the inference server')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--score-thr', type=float, default=0.5, help='bbox score threshold')
args = parser.parse_args()
return args
def parse_result(input, model_class):
bbox = []
label = []
score = []
for anchor in input:
bbox.append(anchor['bbox'])
label.append(model_class.index(anchor['class_name']))
score.append([anchor['score']])
bboxes = np.append(bbox, score, axis=1)
labels = np.array(label)
result = bbox2result(bboxes, labels, len(model_class))
return result
def main(args):
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
# test a single image
model_result = inference_detector(model, args.img)
for i, anchor_set in enumerate(model_result):
anchor_set = anchor_set[anchor_set[:, 4] >= 0.5]
model_result[i] = anchor_set
# show the results
show_result_pyplot(
model,
args.img,
model_result,
score_thr=args.score_thr,
title='pytorch_result')
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
with open(args.img, 'rb') as image:
response = requests.post(url, image)
server_result = parse_result(response.json(), model.CLASSES)
show_result_pyplot(
model,
args.img,
server_result,
score_thr=args.score_thr,
title='server_result')
for i in range(len(model.CLASSES)):
assert np.allclose(model_result[i], server_result[i])
if __name__ == '__main__':
args = parse_args()
main(args)