|
from argparse import ArgumentParser |
|
|
|
import numpy as np |
|
import requests |
|
|
|
from mmdet.apis import inference_detector, init_detector, show_result_pyplot |
|
from mmdet.core import bbox2result |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser() |
|
parser.add_argument('img', help='Image file') |
|
parser.add_argument('config', help='Config file') |
|
parser.add_argument('checkpoint', help='Checkpoint file') |
|
parser.add_argument('model_name', help='The model name in the server') |
|
parser.add_argument( |
|
'--inference-addr', |
|
default='127.0.0.1:8080', |
|
help='Address and port of the inference server') |
|
parser.add_argument( |
|
'--device', default='cuda:0', help='Device used for inference') |
|
parser.add_argument( |
|
'--score-thr', type=float, default=0.5, help='bbox score threshold') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def parse_result(input, model_class): |
|
bbox = [] |
|
label = [] |
|
score = [] |
|
for anchor in input: |
|
bbox.append(anchor['bbox']) |
|
label.append(model_class.index(anchor['class_name'])) |
|
score.append([anchor['score']]) |
|
bboxes = np.append(bbox, score, axis=1) |
|
labels = np.array(label) |
|
result = bbox2result(bboxes, labels, len(model_class)) |
|
return result |
|
|
|
|
|
def main(args): |
|
|
|
model = init_detector(args.config, args.checkpoint, device=args.device) |
|
|
|
model_result = inference_detector(model, args.img) |
|
for i, anchor_set in enumerate(model_result): |
|
anchor_set = anchor_set[anchor_set[:, 4] >= 0.5] |
|
model_result[i] = anchor_set |
|
|
|
show_result_pyplot( |
|
model, |
|
args.img, |
|
model_result, |
|
score_thr=args.score_thr, |
|
title='pytorch_result') |
|
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name |
|
with open(args.img, 'rb') as image: |
|
response = requests.post(url, image) |
|
server_result = parse_result(response.json(), model.CLASSES) |
|
show_result_pyplot( |
|
model, |
|
args.img, |
|
server_result, |
|
score_thr=args.score_thr, |
|
title='server_result') |
|
|
|
for i in range(len(model.CLASSES)): |
|
assert np.allclose(model_result[i], server_result[i]) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
main(args) |
|
|