# dataset settings _base_ = 'coco_instance.py' dataset_type = 'LVISV1Dataset' data_root = 'data/lvis_v1/' data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( _delete_=True, type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/lvis_v1_train.json', img_prefix=data_root)), val=dict( type=dataset_type, ann_file=data_root + 'annotations/lvis_v1_val.json', img_prefix=data_root), test=dict( type=dataset_type, ann_file=data_root + 'annotations/lvis_v1_val.json', img_prefix=data_root)) evaluation = dict(metric=['bbox', 'segm'])