_base_ = [ '../_base_/models/cascade_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( type='DetectoRS_ResNet', conv_cfg=dict(type='ConvAWS'), output_img=True), neck=dict( type='RFP', rfp_steps=2, aspp_out_channels=64, aspp_dilations=(1, 3, 6, 1), rfp_backbone=dict( rfp_inplanes=256, type='DetectoRS_ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, conv_cfg=dict(type='ConvAWS'), pretrained='torchvision://resnet50', style='pytorch')))