Collections: - Name: Dynamic R-CNN Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - Dynamic R-CNN - FPN - RPN - ResNet - RoIAlign Paper: URL: https://arxiv.org/pdf/2004.06002 Title: 'Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training' README: configs/dynamic_rcnn/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/roi_heads/dynamic_roi_head.py#L11 Version: v2.2.0 Models: - Name: dynamic_rcnn_r50_fpn_1x_coco In Collection: Dynamic R-CNN Config: configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 3.8 Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth