# dataset settings dataset_type = 'DeepFashionDataset' data_root = 'data/DeepFashion/In-shop/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(750, 1101), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(750, 1101), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=1, train=dict( type=dataset_type, ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json', img_prefix=data_root + 'Img/', pipeline=train_pipeline, data_root=data_root), val=dict( type=dataset_type, ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json', img_prefix=data_root + 'Img/', pipeline=test_pipeline, data_root=data_root), test=dict( type=dataset_type, ann_file=data_root + 'annotations/DeepFashion_segmentation_gallery.json', img_prefix=data_root + 'Img/', pipeline=test_pipeline, data_root=data_root)) evaluation = dict(interval=5, metric=['bbox', 'segm'])