Collections: - Name: DDOD Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - DDOD - FPN - ResNet Paper: URL: https://arxiv.org/pdf/2107.02963.pdf Title: 'Disentangle Your Dense Object Detector' README: configs/ddod/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.25.0/mmdet/models/detectors/ddod.py#L6 Version: v2.25.0 Models: - Name: ddod_r50_fpn_1x_coco In Collection: DDOD Config: configs/ddod/ddod_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 3.4 Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/ddod/ddod_r50_fpn_1x_coco/ddod_r50_fpn_1x_coco_20220523_223737-29b2fc67.pth