Collections: - Name: Empirical Attention Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - Deformable Convolution - FPN - RPN - ResNet - RoIAlign - Spatial Attention Paper: URL: https://arxiv.org/pdf/1904.05873 Title: 'An Empirical Study of Spatial Attention Mechanisms in Deep Networks' README: configs/empirical_attention/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/generalized_attention.py#L10 Version: v2.0.0 Models: - Name: faster_rcnn_r50_fpn_attention_1111_1x_coco In Collection: Empirical Attention Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py Metadata: Training Memory (GB): 8.0 inference time (ms/im): - value: 72.46 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth - Name: faster_rcnn_r50_fpn_attention_0010_1x_coco In Collection: Empirical Attention Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py Metadata: Training Memory (GB): 4.2 inference time (ms/im): - value: 54.35 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130-7cb0c14d.pth - Name: faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco In Collection: Empirical Attention Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py Metadata: Training Memory (GB): 8.0 inference time (ms/im): - value: 78.74 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130-8b2523a6.pth - Name: faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco In Collection: Empirical Attention Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py Metadata: Training Memory (GB): 4.2 inference time (ms/im): - value: 58.48 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130-1a2e831d.pth