# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp import tempfile import mmcv import numpy as np import pytest import torch from mmdet.core import visualization as vis from mmdet.datasets import (CityscapesDataset, CocoDataset, CocoPanopticDataset, VOCDataset) def test_color(): assert vis.color_val_matplotlib(mmcv.Color.blue) == (0., 0., 1.) assert vis.color_val_matplotlib('green') == (0., 1., 0.) assert vis.color_val_matplotlib((1, 2, 3)) == (3 / 255, 2 / 255, 1 / 255) assert vis.color_val_matplotlib(100) == (100 / 255, 100 / 255, 100 / 255) assert vis.color_val_matplotlib(np.zeros(3, dtype=np.int)) == (0., 0., 0.) # forbid white color with pytest.raises(TypeError): vis.color_val_matplotlib([255, 255, 255]) # forbid float with pytest.raises(TypeError): vis.color_val_matplotlib(1.0) # overflowed with pytest.raises(AssertionError): vis.color_val_matplotlib((0, 0, 500)) def test_imshow_det_bboxes(): tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', 'image.jpg') image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) out_image = vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape assert not np.allclose(image, out_image) os.remove(tmp_filename) # test grayscale images image = np.ones((10, 10), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) out_image = vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape[:2] os.remove(tmp_filename) # test shaped (0,) image = np.ones((10, 10, 3), np.uint8) bbox = np.ones((0, 4)) label = np.ones((0, )) vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test mask image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) segms = np.random.random((2, 10, 10)) > 0.5 segms = np.array(segms, np.int32) vis.imshow_det_bboxes( image, bbox, label, segms, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test tensor mask type error with pytest.raises(AttributeError): segms = torch.tensor(segms) vis.imshow_det_bboxes(image, bbox, label, segms, show=False) def test_imshow_gt_det_bboxes(): tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', 'image.jpg') image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) annotation = dict(gt_bboxes=bbox, gt_labels=label) det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) result = [det_result] out_image = vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape assert not np.allclose(image, out_image) os.remove(tmp_filename) # test grayscale images image = np.ones((10, 10), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) annotation = dict(gt_bboxes=bbox, gt_labels=label) det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) result = [det_result] vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test numpy mask gt_mask = np.ones((2, 10, 10)) annotation['gt_masks'] = gt_mask vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test tensor mask gt_mask = torch.ones((2, 10, 10)) annotation['gt_masks'] = gt_mask vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test unsupported type annotation['gt_masks'] = [] with pytest.raises(TypeError): vis.imshow_gt_det_bboxes(image, annotation, result, show=False) def test_palette(): assert vis.palette_val([(1, 2, 3)])[0] == (1 / 255, 2 / 255, 3 / 255) # test list palette = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] palette_ = vis.get_palette(palette, 3) for color, color_ in zip(palette, palette_): assert color == color_ # test tuple palette = vis.get_palette((1, 2, 3), 3) assert len(palette) == 3 for color in palette: assert color == (1, 2, 3) # test color str palette = vis.get_palette('red', 3) assert len(palette) == 3 for color in palette: assert color == (255, 0, 0) # test dataset str palette = vis.get_palette('coco', len(CocoDataset.CLASSES)) assert len(palette) == len(CocoDataset.CLASSES) assert palette[0] == (220, 20, 60) palette = vis.get_palette('coco', len(CocoPanopticDataset.CLASSES)) assert len(palette) == len(CocoPanopticDataset.CLASSES) assert palette[-1] == (250, 141, 255) palette = vis.get_palette('voc', len(VOCDataset.CLASSES)) assert len(palette) == len(VOCDataset.CLASSES) assert palette[0] == (106, 0, 228) palette = vis.get_palette('citys', len(CityscapesDataset.CLASSES)) assert len(palette) == len(CityscapesDataset.CLASSES) assert palette[0] == (220, 20, 60) # test random palette1 = vis.get_palette('random', 3) palette2 = vis.get_palette(None, 3) for color1, color2 in zip(palette1, palette2): assert isinstance(color1, tuple) assert isinstance(color2, tuple) assert color1 == color2