# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import time import torch from mmcv import Config, DictAction from mmcv.cnn import fuse_conv_bn from mmcv.parallel import MMDistributedDataParallel from mmcv.runner import init_dist, load_checkpoint, wrap_fp16_model from mmdet.datasets import (build_dataloader, build_dataset, replace_ImageToTensor) from mmdet.models import build_detector from mmdet.utils import replace_cfg_vals, update_data_root def parse_args(): parser = argparse.ArgumentParser(description='MMDet benchmark a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--repeat-num', type=int, default=1, help='number of repeat times of measurement for averaging the results') parser.add_argument( '--max-iter', type=int, default=2000, help='num of max iter') parser.add_argument( '--log-interval', type=int, default=50, help='interval of logging') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def measure_inference_speed(cfg, checkpoint, max_iter, log_interval, is_fuse_conv_bn): # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # build the dataloader samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, # Because multiple processes will occupy additional CPU resources, # FPS statistics will be more unstable when workers_per_gpu is not 0. # It is reasonable to set workers_per_gpu to 0. workers_per_gpu=0, dist=True, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, checkpoint, map_location='cpu') if is_fuse_conv_bn: model = fuse_conv_bn(model) model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) model.eval() # the first several iterations may be very slow so skip them num_warmup = 5 pure_inf_time = 0 fps = 0 # benchmark with 2000 image and take the average for i, data in enumerate(data_loader): torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, rescale=True, **data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= num_warmup: pure_inf_time += elapsed if (i + 1) % log_interval == 0: fps = (i + 1 - num_warmup) / pure_inf_time print( f'Done image [{i + 1:<3}/ {max_iter}], ' f'fps: {fps:.1f} img / s, ' f'times per image: {1000 / fps:.1f} ms / img', flush=True) if (i + 1) == max_iter: fps = (i + 1 - num_warmup) / pure_inf_time print( f'Overall fps: {fps:.1f} img / s, ' f'times per image: {1000 / fps:.1f} ms / img', flush=True) break return fps def repeat_measure_inference_speed(cfg, checkpoint, max_iter, log_interval, is_fuse_conv_bn, repeat_num=1): assert repeat_num >= 1 fps_list = [] for _ in range(repeat_num): # cp_cfg = copy.deepcopy(cfg) fps_list.append( measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval, is_fuse_conv_bn)) if repeat_num > 1: fps_list_ = [round(fps, 1) for fps in fps_list] times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list] mean_fps_ = sum(fps_list_) / len(fps_list_) mean_times_pre_image_ = sum(times_pre_image_list_) / len( times_pre_image_list_) print( f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, ' f'times per image: ' f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img', flush=True) return fps_list return fps_list[0] def main(): args = parse_args() cfg = Config.fromfile(args.config) # replace the ${key} with the value of cfg.key cfg = replace_cfg_vals(cfg) # update data root according to MMDET_DATASETS update_data_root(cfg) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) if args.launcher == 'none': raise NotImplementedError('Only supports distributed mode') else: init_dist(args.launcher, **cfg.dist_params) repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter, args.log_interval, args.fuse_conv_bn, args.repeat_num) if __name__ == '__main__': main()