# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from argparse import ArgumentParser import mmcv import numpy as np def print_coco_results(results): def _print(result, ap=1, iouThr=None, areaRng='all', maxDets=100): titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap == 1 else '(AR)' iouStr = '0.50:0.95' \ if iouThr is None else f'{iouThr:0.2f}' iStr = f' {titleStr:<18} {typeStr} @[ IoU={iouStr:<9} | ' iStr += f'area={areaRng:>6s} | maxDets={maxDets:>3d} ] = {result:0.3f}' print(iStr) stats = np.zeros((12, )) stats[0] = _print(results[0], 1) stats[1] = _print(results[1], 1, iouThr=.5) stats[2] = _print(results[2], 1, iouThr=.75) stats[3] = _print(results[3], 1, areaRng='small') stats[4] = _print(results[4], 1, areaRng='medium') stats[5] = _print(results[5], 1, areaRng='large') stats[6] = _print(results[6], 0, maxDets=1) stats[7] = _print(results[7], 0, maxDets=10) stats[8] = _print(results[8], 0) stats[9] = _print(results[9], 0, areaRng='small') stats[10] = _print(results[10], 0, areaRng='medium') stats[11] = _print(results[11], 0, areaRng='large') def get_coco_style_results(filename, task='bbox', metric=None, prints='mPC', aggregate='benchmark'): assert aggregate in ['benchmark', 'all'] if prints == 'all': prints = ['P', 'mPC', 'rPC'] elif isinstance(prints, str): prints = [prints] for p in prints: assert p in ['P', 'mPC', 'rPC'] if metric is None: metrics = [ 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100', 'ARs', 'ARm', 'ARl' ] elif isinstance(metric, list): metrics = metric else: metrics = [metric] for metric_name in metrics: assert metric_name in [ 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100', 'ARs', 'ARm', 'ARl' ] eval_output = mmcv.load(filename) num_distortions = len(list(eval_output.keys())) results = np.zeros((num_distortions, 6, len(metrics)), dtype='float32') for corr_i, distortion in enumerate(eval_output): for severity in eval_output[distortion]: for metric_j, metric_name in enumerate(metrics): mAP = eval_output[distortion][severity][task][metric_name] results[corr_i, severity, metric_j] = mAP P = results[0, 0, :] if aggregate == 'benchmark': mPC = np.mean(results[:15, 1:, :], axis=(0, 1)) else: mPC = np.mean(results[:, 1:, :], axis=(0, 1)) rPC = mPC / P print(f'\nmodel: {osp.basename(filename)}') if metric is None: if 'P' in prints: print(f'Performance on Clean Data [P] ({task})') print_coco_results(P) if 'mPC' in prints: print(f'Mean Performance under Corruption [mPC] ({task})') print_coco_results(mPC) if 'rPC' in prints: print(f'Relative Performance under Corruption [rPC] ({task})') print_coco_results(rPC) else: if 'P' in prints: print(f'Performance on Clean Data [P] ({task})') for metric_i, metric_name in enumerate(metrics): print(f'{metric_name:5} = {P[metric_i]:0.3f}') if 'mPC' in prints: print(f'Mean Performance under Corruption [mPC] ({task})') for metric_i, metric_name in enumerate(metrics): print(f'{metric_name:5} = {mPC[metric_i]:0.3f}') if 'rPC' in prints: print(f'Relative Performance under Corruption [rPC] ({task})') for metric_i, metric_name in enumerate(metrics): print(f'{metric_name:5} => {rPC[metric_i] * 100:0.1f} %') return results def get_voc_style_results(filename, prints='mPC', aggregate='benchmark'): assert aggregate in ['benchmark', 'all'] if prints == 'all': prints = ['P', 'mPC', 'rPC'] elif isinstance(prints, str): prints = [prints] for p in prints: assert p in ['P', 'mPC', 'rPC'] eval_output = mmcv.load(filename) num_distortions = len(list(eval_output.keys())) results = np.zeros((num_distortions, 6, 20), dtype='float32') for i, distortion in enumerate(eval_output): for severity in eval_output[distortion]: mAP = [ eval_output[distortion][severity][j]['ap'] for j in range(len(eval_output[distortion][severity])) ] results[i, severity, :] = mAP P = results[0, 0, :] if aggregate == 'benchmark': mPC = np.mean(results[:15, 1:, :], axis=(0, 1)) else: mPC = np.mean(results[:, 1:, :], axis=(0, 1)) rPC = mPC / P print(f'\nmodel: {osp.basename(filename)}') if 'P' in prints: print(f'Performance on Clean Data [P] in AP50 = {np.mean(P):0.3f}') if 'mPC' in prints: print('Mean Performance under Corruption [mPC] in AP50 = ' f'{np.mean(mPC):0.3f}') if 'rPC' in prints: print('Relative Performance under Corruption [rPC] in % = ' f'{np.mean(rPC) * 100:0.1f}') return np.mean(results, axis=2, keepdims=True) def get_results(filename, dataset='coco', task='bbox', metric=None, prints='mPC', aggregate='benchmark'): assert dataset in ['coco', 'voc', 'cityscapes'] if dataset in ['coco', 'cityscapes']: results = get_coco_style_results( filename, task=task, metric=metric, prints=prints, aggregate=aggregate) elif dataset == 'voc': if task != 'bbox': print('Only bbox analysis is supported for Pascal VOC') print('Will report bbox results\n') if metric not in [None, ['AP'], ['AP50']]: print('Only the AP50 metric is supported for Pascal VOC') print('Will report AP50 metric\n') results = get_voc_style_results( filename, prints=prints, aggregate=aggregate) return results def get_distortions_from_file(filename): eval_output = mmcv.load(filename) return get_distortions_from_results(eval_output) def get_distortions_from_results(eval_output): distortions = [] for i, distortion in enumerate(eval_output): distortions.append(distortion.replace('_', ' ')) return distortions def main(): parser = ArgumentParser(description='Corruption Result Analysis') parser.add_argument('filename', help='result file path') parser.add_argument( '--dataset', type=str, choices=['coco', 'voc', 'cityscapes'], default='coco', help='dataset type') parser.add_argument( '--task', type=str, nargs='+', choices=['bbox', 'segm'], default=['bbox'], help='task to report') parser.add_argument( '--metric', nargs='+', choices=[ None, 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100', 'ARs', 'ARm', 'ARl' ], default=None, help='metric to report') parser.add_argument( '--prints', type=str, nargs='+', choices=['P', 'mPC', 'rPC'], default='mPC', help='corruption benchmark metric to print') parser.add_argument( '--aggregate', type=str, choices=['all', 'benchmark'], default='benchmark', help='aggregate all results or only those \ for benchmark corruptions') args = parser.parse_args() for task in args.task: get_results( args.filename, dataset=args.dataset, task=task, metric=args.metric, prints=args.prints, aggregate=args.aggregate) if __name__ == '__main__': main()