File size: 1,914 Bytes
57b07e5 a207ad1 d95a265 a207ad1 b088a86 a207ad1 d95a265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: meeting_summarizer_model
results: []
datasets:
- huuuyeah/meetingbank
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# meeting_summarizer_model
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the dataset "huuuyeah/meetingbank".
It achieves the following results on the evaluation set:
- Loss: 2.3916
- Rouge1: 0.3517
- Rouge2: 0.2684
- Rougel: 0.3353
- Rougelsum: 0.3363
- Gen Len: 18.7564
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 324 | 2.9030 | 0.2906 | 0.1982 | 0.2662 | 0.2663 | 18.9687 |
| 5.7333 | 2.0 | 648 | 2.5094 | 0.3313 | 0.2456 | 0.3132 | 0.3138 | 18.7506 |
| 5.7333 | 3.0 | 972 | 2.4188 | 0.3514 | 0.2673 | 0.3345 | 0.335 | 18.7749 |
| 3.9805 | 4.0 | 1296 | 2.3916 | 0.3517 | 0.2684 | 0.3353 | 0.3363 | 18.7564 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.2 |