--- license: apache-2.0 base_model: microsoft/swinv2-large-patch4-window12-192-22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12-192-22k-finetuned-ethzurich results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8295454545454546 --- # swinv2-large-patch4-window12-192-22k-finetuned-ethzurich This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-large-patch4-window12-192-22k) on the Urban Resource Cadastre dataset created by Deepika Raghu, Martin Juan José Bucher, and Catherine De Wolf (https://github.com/raghudeepika/urban-resource-cadastre-repository). It achieves the following results on the evaluation set: - Loss: 0.6083 - Accuracy: 0.8295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 1.2578 | 0.6364 | | 1.6142 | 1.92 | 12 | 0.7696 | 0.75 | | 1.6142 | 2.88 | 18 | 0.6083 | 0.8295 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3