--- language: - tr license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium Tr - Can K V2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: tr split: test args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 15.4185472196202 --- # Whisper Medium Tr - Can K V2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Wer: 15.4185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.203 | 0.3448 | 1000 | 0.2255 | 19.4192 | | 0.1602 | 0.6895 | 2000 | 0.2142 | 18.0448 | | 0.0814 | 1.0343 | 3000 | 0.2087 | 17.5338 | | 0.0761 | 1.3791 | 4000 | 0.2060 | 17.1558 | | 0.0734 | 1.7238 | 5000 | 0.1998 | 16.5052 | | 0.0335 | 2.0686 | 6000 | 0.2073 | 16.7283 | | 0.0344 | 2.4134 | 7000 | 0.2066 | 15.9091 | | 0.0338 | 2.7581 | 8000 | 0.2023 | 15.3709 | | 0.0099 | 3.1029 | 9000 | 0.2211 | 15.6331 | | 0.0097 | 3.4477 | 10000 | 0.2254 | 15.6008 | | 0.0096 | 3.7924 | 11000 | 0.2254 | 15.3334 | | 0.0022 | 4.1372 | 12000 | 0.2285 | 15.4185 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1