cappuch commited on
Commit
8de7ea8
1 Parent(s): d26c0b8

Upload 7 files

Browse files
Files changed (7) hide show
  1. README.md +65 -0
  2. config.json +82 -0
  3. merges.txt +0 -0
  4. special_tokens_map.json +1 -0
  5. tf_model.h5 +3 -0
  6. tokenizer_config.json +1 -0
  7. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - text-classification
5
+ - tensorflow
6
+ - roberta
7
+ datasets:
8
+ - go_emotions
9
+ license: mit
10
+ ---
11
+
12
+ Connect me on LinkedIn
13
+ - [linkedin.com/in/arpanghoshal](https://www.linkedin.com/in/arpanghoshal)
14
+
15
+
16
+ ## What is GoEmotions
17
+
18
+ Dataset labelled 58000 Reddit comments with 28 emotions
19
+
20
+ - admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral
21
+
22
+
23
+ ## What is RoBERTa
24
+
25
+ RoBERTa builds on BERT’s language masking strategy and modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. RoBERTa was also trained on an order of magnitude more data than BERT, for a longer amount of time. This allows RoBERTa representations to generalize even better to downstream tasks compared to BERT.
26
+
27
+
28
+ ## Hyperparameters
29
+
30
+ | Parameter | |
31
+ | ----------------- | :---: |
32
+ | Learning rate | 5e-5 |
33
+ | Epochs | 10 |
34
+ | Max Seq Length | 50 |
35
+ | Batch size | 16 |
36
+ | Warmup Proportion | 0.1 |
37
+ | Epsilon | 1e-8 |
38
+
39
+
40
+ ## Results
41
+
42
+ Best Result of `Macro F1` - 49.30%
43
+
44
+ ## Usage
45
+
46
+ ```python
47
+
48
+ from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
49
+
50
+ tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
51
+ model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
52
+
53
+ emotion = pipeline('sentiment-analysis',
54
+ model='arpanghoshal/EmoRoBERTa')
55
+
56
+ emotion_labels = emotion("Thanks for using it.")
57
+ print(emotion_labels)
58
+
59
+ ```
60
+ Output
61
+
62
+ ```
63
+ [{'label': 'gratitude', 'score': 0.9964383244514465}]
64
+ ```
65
+
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "admiration",
14
+ "1": "amusement",
15
+ "2": "anger",
16
+ "3": "annoyance",
17
+ "4": "approval",
18
+ "5": "caring",
19
+ "6": "confusion",
20
+ "7": "curiosity",
21
+ "8": "desire",
22
+ "9": "disappointment",
23
+ "10": "disapproval",
24
+ "11": "disgust",
25
+ "12": "embarrassment",
26
+ "13": "excitement",
27
+ "14": "fear",
28
+ "15": "gratitude",
29
+ "16": "grief",
30
+ "17": "joy",
31
+ "18": "love",
32
+ "19": "nervousness",
33
+ "20": "optimism",
34
+ "21": "pride",
35
+ "22": "realization",
36
+ "23": "relief",
37
+ "24": "remorse",
38
+ "25": "sadness",
39
+ "26": "surprise",
40
+ "27": "neutral"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 3072,
44
+ "label2id": {
45
+ "admiration": 0,
46
+ "amusement": 1,
47
+ "anger": 2,
48
+ "annoyance": 3,
49
+ "approval": 4,
50
+ "caring": 5,
51
+ "confusion": 6,
52
+ "curiosity": 7,
53
+ "desire": 8,
54
+ "disappointment": 9,
55
+ "disapproval": 10,
56
+ "disgust": 11,
57
+ "embarrassment": 12,
58
+ "excitement": 13,
59
+ "fear": 14,
60
+ "gratitude": 15,
61
+ "grief": 16,
62
+ "joy": 17,
63
+ "love": 18,
64
+ "nervousness": 19,
65
+ "neutral": 27,
66
+ "optimism": 20,
67
+ "pride": 21,
68
+ "realization": 22,
69
+ "relief": 23,
70
+ "remorse": 24,
71
+ "sadness": 25,
72
+ "surprise": 26
73
+ },
74
+ "layer_norm_eps": 1e-05,
75
+ "max_position_embeddings": 514,
76
+ "model_type": "roberta",
77
+ "num_attention_heads": 12,
78
+ "num_hidden_layers": 12,
79
+ "pad_token_id": 1,
80
+ "type_vocab_size": 1,
81
+ "vocab_size": 50265
82
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d74be3d7830c42515c963e702f4f3ce883092d738645be9625725831d7bb81a1
3
+ size 501322656
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model_max_length": 512}
vocab.json ADDED
The diff for this file is too large to render. See raw diff