carlesoctav's picture
Update README.md
cae641c
|
raw
history blame
4.59 kB
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
This model utilizes a newer version of Sentence Transformers. If you're having trouble using this model, please try installing the latest version of Sentence Transformers with:
```bash
pip install --upgrade --force-reinstall --no-deps git+https://github.com/UKPLab/sentence-transformers.git
```
# carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25')
model = AutoModel.from_pretrained('carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
| Model | Mmarco Dev | | MrTyDi Test | | Miracal Test | |
|-----------------------------------------|------------|----------------|-------------|----------------|--------------|----------------------------|
| | MRR@10 | R@1000 | MRR@10 | R@1000 | NCDG@10 | R@1K |
| $\text{BM25 (Elastic Search)}$ | .114 | .642 | .279 | .858 | .391 | .971 |
| $\text{IndoBERT}_{\text{DOTHardnegs}}$ | .232 | .847 | .471 | .921 | .397 | .898 |
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 15593 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 1, 'similarity_fct': 'dot_score'}
```
Parameters of the fit()-Method:
```
{
"epochs": 5,
"evaluation_steps": 10000,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->