carlesoctav
commited on
Commit
•
4127b6d
1
Parent(s):
e9bf3eb
Update train.py
Browse files
train.py
CHANGED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import tensorflow as tf
|
3 |
+
from transformers import TFXLMRobertaModel, AutoTokenizer, TFAutoModel
|
4 |
+
from datasets import load_dataset, concatenate_datasets
|
5 |
+
from datetime import datetime
|
6 |
+
import logging
|
7 |
+
from pyprojroot.here import here
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class mean_pooling_layer(tf.keras.layers.Layer):
|
12 |
+
def __init__(self):
|
13 |
+
super(mean_pooling_layer, self).__init__()
|
14 |
+
|
15 |
+
def call(self, inputs):
|
16 |
+
token_embeddings = inputs[0]
|
17 |
+
attention_mask = inputs[1]
|
18 |
+
input_mask_expanded = tf.cast(
|
19 |
+
tf.broadcast_to(tf.expand_dims(attention_mask, -1), tf.shape(token_embeddings)),
|
20 |
+
tf.float32
|
21 |
+
)
|
22 |
+
|
23 |
+
embeddings = tf.math.reduce_sum(token_embeddings * input_mask_expanded, axis=1) / tf.clip_by_value(tf.math.reduce_sum(input_mask_expanded, axis=1), 1e-9, tf.float32.max)
|
24 |
+
return embeddings
|
25 |
+
|
26 |
+
def get_config(self):
|
27 |
+
config = super(mean_pooling_layer, self).get_config()
|
28 |
+
return config
|
29 |
+
|
30 |
+
|
31 |
+
def create_model():
|
32 |
+
base_student_model = TFAutoModel.from_pretrained("nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large",from_pt=True)
|
33 |
+
input_ids_en = tf.keras.layers.Input(shape=(256,),name='input_ids_en', dtype=tf.int32)
|
34 |
+
attention_mask_en = tf.keras.layers.Input(shape=(256,), name='attention_mask_en', dtype=tf.int32)
|
35 |
+
input_ids_id = tf.keras.layers.Input(shape=(256,),name='input_ids_id', dtype=tf.int32)
|
36 |
+
attention_mask_id = tf.keras.layers.Input(shape=(256,), name='attention_mask_id', dtype=tf.int32)
|
37 |
+
|
38 |
+
output_en = base_student_model.roberta(input_ids_en, attention_mask=attention_mask_en).last_hidden_state[:,0,:]
|
39 |
+
output_id = base_student_model.roberta(input_ids_id, attention_mask=attention_mask_id).last_hidden_state[:,0,:]
|
40 |
+
|
41 |
+
student_model = tf.keras.Model(inputs=[input_ids_en, attention_mask_en, input_ids_id, attention_mask_id], outputs=[output_en, output_id])
|
42 |
+
return student_model
|
43 |
+
|
44 |
+
class sentence_translation_metric(tf.keras.callbacks.Callback):
|
45 |
+
def on_epoch_end(self,epoch,logs):
|
46 |
+
embeddings_en, embeddings_id = self.model.predict(val_dataset, verbose=1)
|
47 |
+
# get the embeddings
|
48 |
+
# compute the cosine similarity between the two
|
49 |
+
#normalize the embeddings
|
50 |
+
embeddings_en = tf.math.l2_normalize(embeddings_en, axis=1)
|
51 |
+
embeddings_id = tf.math.l2_normalize(embeddings_id, axis=1)
|
52 |
+
similarity_matrix = tf.matmul(embeddings_en, embeddings_id, transpose_b=True)
|
53 |
+
# get the mean similarity
|
54 |
+
correct_en_id = 0
|
55 |
+
for i in range(similarity_matrix.shape[0]):
|
56 |
+
if tf.math.argmax(similarity_matrix[i]) == i:
|
57 |
+
correct_en_id += 1
|
58 |
+
|
59 |
+
similarity_matrix_T = tf.transpose(similarity_matrix)
|
60 |
+
correct_id_en = 0
|
61 |
+
for i in range(similarity_matrix_T.shape[0]):
|
62 |
+
if tf.math.argmax(similarity_matrix_T[i]) == i:
|
63 |
+
correct_id_en += 1
|
64 |
+
|
65 |
+
acc_en_id = correct_en_id / similarity_matrix.shape[0]
|
66 |
+
acc_id_en = correct_id_en / similarity_matrix_T.shape[0]
|
67 |
+
avg_acc = (acc_en_id + acc_id_en) / 2
|
68 |
+
print(f"translation accuracy from english to indonesian = {acc_en_id}")
|
69 |
+
print(f"translation accuracy from indonesian to english = {acc_id_en}")
|
70 |
+
print(f"average translation accuracy = {avg_acc}")
|
71 |
+
|
72 |
+
logs["val_acc_en_id"] = acc_en_id
|
73 |
+
logs["val_acc_id_en"] = acc_id_en
|
74 |
+
logs["val_avg_acc"] = avg_acc
|
75 |
+
|
76 |
+
|
77 |
+
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
|
78 |
+
def __init__(self, d_model, warmup_steps=100000):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.d_model = d_model
|
82 |
+
self.d_model = tf.cast(self.d_model, tf.float32)
|
83 |
+
|
84 |
+
self.warmup_steps = warmup_steps
|
85 |
+
|
86 |
+
def __call__(self, step):
|
87 |
+
step = tf.cast(step, dtype=tf.float32)
|
88 |
+
arg1 = tf.math.rsqrt(step)
|
89 |
+
arg2 = step * (self.warmup_steps ** -1.5)
|
90 |
+
|
91 |
+
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
num_data = 0
|
96 |
+
dataset = load_dataset("carlesoctav/en-id-parallel-sentences-embedding")
|
97 |
+
|
98 |
+
dataset_1 = dataset["combinedtech"]
|
99 |
+
|
100 |
+
for split in dataset:
|
101 |
+
dataset_1 = concatenate_datasets([dataset_1, dataset[split]])
|
102 |
+
|
103 |
+
|
104 |
+
batch_size = 384
|
105 |
+
dataset = dataset_1.train_test_split(test_size=0.01, shuffle=True)
|
106 |
+
train_dataset = dataset["train"]
|
107 |
+
val_dataset = dataset["test"]
|
108 |
+
print(val_dataset.shape)
|
109 |
+
|
110 |
+
train_dataset = train_dataset.to_tf_dataset(
|
111 |
+
columns=["input_ids_en", "attention_mask_en", "input_ids_id", "attention_mask_id"],
|
112 |
+
label_cols="target_embedding",
|
113 |
+
batch_size=batch_size,
|
114 |
+
).unbatch()
|
115 |
+
|
116 |
+
val_dataset = val_dataset.to_tf_dataset(
|
117 |
+
columns=["input_ids_en", "attention_mask_en", "input_ids_id", "attention_mask_id"],
|
118 |
+
label_cols="target_embedding",
|
119 |
+
batch_size=batch_size,
|
120 |
+
).unbatch()
|
121 |
+
|
122 |
+
#check feature
|
123 |
+
print(train_dataset.element_spec)
|
124 |
+
print(val_dataset.element_spec)
|
125 |
+
|
126 |
+
train_dataset = train_dataset.batch(batch_size, drop_remainder=True).cache()
|
127 |
+
val_dataset = val_dataset.batch(batch_size, drop_remainder=True).cache()
|
128 |
+
|
129 |
+
|
130 |
+
learning_rate = CustomSchedule(384)
|
131 |
+
|
132 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
|
133 |
+
epsilon=1e-9)
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
loss = tf.keras.losses.MeanSquaredError()
|
138 |
+
|
139 |
+
date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
140 |
+
output_path = here(f"disk/model/{date_time}/multiqa-mpnet-dot-v1.h5")
|
141 |
+
|
142 |
+
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
|
143 |
+
filepath = output_path,
|
144 |
+
save_weights_only = True,
|
145 |
+
monitor = "val_avg_acc",
|
146 |
+
mode = 'auto',
|
147 |
+
verbose = 1,
|
148 |
+
save_best_only = True,
|
149 |
+
initial_value_threshold = 0.1
|
150 |
+
)
|
151 |
+
|
152 |
+
early_stopping = tf.keras.callbacks.EarlyStopping(
|
153 |
+
monitor = "val_avg_acc",
|
154 |
+
mode = 'auto',
|
155 |
+
restore_best_weights=False,
|
156 |
+
patience = 2,
|
157 |
+
verbose=1,
|
158 |
+
start_from_epoch = 25,
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
# tensor_board = tf.keras.callbacks.TensorBoard(
|
163 |
+
# log_dir = "gs://dicoding-capstone/output/logs/"+date_time
|
164 |
+
# )
|
165 |
+
|
166 |
+
csv_logger = tf.keras.callbacks.CSVLogger(
|
167 |
+
filename = here(f"disk/performance_logs/log-{date_time}.csv"),
|
168 |
+
separator = ",",
|
169 |
+
append = False
|
170 |
+
)
|
171 |
+
|
172 |
+
reduce_rl = tf.keras.callbacks.ReduceLROnPlateau(
|
173 |
+
monitor = "",
|
174 |
+
factor = 0.1,
|
175 |
+
patience = 2,
|
176 |
+
min_lr = 1e-6,
|
177 |
+
verbose = 1
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
callbacks = [sentence_translation_metric(), model_checkpoint, csv_logger,early_stopping]
|
182 |
+
|
183 |
+
|
184 |
+
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver("local")
|
185 |
+
tf.config.experimental_connect_to_cluster(cluster_resolver)
|
186 |
+
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
|
187 |
+
strategy = tf.distribute.TPUStrategy(cluster_resolver)
|
188 |
+
|
189 |
+
with strategy.scope():
|
190 |
+
student_model = create_model()
|
191 |
+
student_model.compile(optimizer=optimizer, loss=loss)
|
192 |
+
|
193 |
+
student_model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=callbacks)
|
194 |
+
|
195 |
+
last_epoch_save = here(f"disk/model/last_epoch/{date_time}/multiqa-mpnet-dot-v1.h5")
|
196 |
+
student_model.save_weights(last_epoch_save)
|
197 |
+
|
198 |
+
|
199 |
+
|