carlosmirandad commited on
Commit
8319b29
1 Parent(s): a49e83f

First commit: Unit 1 Model Upload

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 227.41 +/- 72.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff48c13ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff48c13f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff48c17040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff48c170d0>", "_build": "<function ActorCriticPolicy._build at 0x7eff48c17160>", "forward": "<function ActorCriticPolicy.forward at 0x7eff48c171f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff48c17280>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff48c17310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff48c173a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff48c17430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff48c174c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff48c11660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672094016198508970, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLwj1vaME+mCTFuhW0dr6tp1Q9NOKsvAAAAAAAAAAAZgfNveGeiLp62Ik7cSOLODGtJTs1HRe5AACAPwAAgD/ALqG9KUgyuuVHhjerT8QwKyMRusobm7YAAIA/AACAPwACYz6Mhjg+ijgjvmnMDL5YXre8is10vQAAAAAAAAAAzU/HvXsWjbp+gcU4s2GTMwUquzhTL+O3AACAPwAAAABARYA9UJepPzsGTD5SKce+uDvQPXYAij0AAAAAAAAAAAAAKLkdnQk/QUy8vYYTZL6MwUq9A6YsvQAAAAAAAAAAM32QvAW5hLtwZZU8dAt3POAgwTyeEVW9AACAPwAAgD/242O+XzelPMI6CTtE7Xm5JOUuvpeWNroAAIA/AACAP4AXKL1IJ5a6llGMuaA8irQrmMY6a0iiOAAAgD8AAIA/AILbPI8WUboS+W+6LeVANsdS6jlDEYo5AACAPwAAgD+aU5e8j0Z1utR5LDjqpRK2YIWaOvQBRrcAAIA/AACAP0Ctnj2pY7c/JWamPqPyh77kfuU9lR2EPQAAAAAAAAAAZqYZvcMpG7rf24Y6tpWtNkZGgDpqap25AACAPwAAgD8AuA67KdAEugJ//LvD31U1wAnjum79wrQAAIA/AACAP10chj6WkRY/nizyvUdUaL4qm/C6gsGzPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoDaq04GQZUCUhpRSlIwBbJRN6AOMAXSUR0ChonUOEug6dX2UKGgGaAloD0MI3uS36GQhZECUhpRSlGgVTegDaBZHQKGjMjdHlOp1fZQoaAZoCWgPQwjTS4xlei5jQJSGlFKUaBVN6ANoFkdAoaNIQUYbbXV9lChoBmgJaA9DCObOTDAc+WRAlIaUUpRoFU3oA2gWR0ChqHVi4J/odX2UKGgGaAloD0MIcJo+O+ACY0CUhpRSlGgVTegDaBZHQKGo73s5XEJ1fZQoaAZoCWgPQwiaRL3gU39gQJSGlFKUaBVN6ANoFkdAoavJ73PAwnV9lChoBmgJaA9DCJp63SKw4GFAlIaUUpRoFU3oA2gWR0Chq/Z9NN8FdX2UKGgGaAloD0MIbvyJyoZxYUCUhpRSlGgVTegDaBZHQKGxNHp8neB1fZQoaAZoCWgPQwjw4CcOoHBfQJSGlFKUaBVN6ANoFkdAobN+lfqoqHV9lChoBmgJaA9DCPiKbr0mTmNAlIaUUpRoFU3oA2gWR0Chs/jLbHp9dX2UKGgGaAloD0MIyQImcGveY0CUhpRSlGgVTegDaBZHQKG0jRdhRZV1fZQoaAZoCWgPQwiv0XKgh2RkQJSGlFKUaBVN6ANoFkdAobn4fjjrA3V9lChoBmgJaA9DCBu+hXVjKGRAlIaUUpRoFU3oA2gWR0ChvSCLuQZGdX2UKGgGaAloD0MIW0QUkzfwJ0CUhpRSlGgVTSUBaBZHQKG9XS3solV1fZQoaAZoCWgPQwgyAFRxY2BiQJSGlFKUaBVN6ANoFkdAob1tcbBGhHV9lChoBmgJaA9DCKEQAYdQLF9AlIaUUpRoFU3oA2gWR0Chvk0NKAavdX2UKGgGaAloD0MI/U6TGe/AYkCUhpRSlGgVTegDaBZHQKG+8SlnAZd1fZQoaAZoCWgPQwgDlfHvM3RmQJSGlFKUaBVN6ANoFkdAocwK1PWQOnV9lChoBmgJaA9DCKAy/n1GHmJAlIaUUpRoFU3oA2gWR0ChzRVmJ3xGdX2UKGgGaAloD0MIizbHuU1hXUCUhpRSlGgVTegDaBZHQKHNNF3IMjN1fZQoaAZoCWgPQwjBAMKHEvpcQJSGlFKUaBVN6ANoFkdAodK1zS1E3XV9lChoBmgJaA9DCPOspBXfdltAlIaUUpRoFU3oA2gWR0Ch0zfkWAPNdX2UKGgGaAloD0MItYtppnsPYkCUhpRSlGgVTegDaBZHQKHWGi1y/9J1fZQoaAZoCWgPQwhortNIS6hhQJSGlFKUaBVN6ANoFkdAodZJsl9jPXV9lChoBmgJaA9DCGO2ZFUEGGRAlIaUUpRoFU3oA2gWR0Ch3ArqUu+RdX2UKGgGaAloD0MIfGDHf4HsZECUhpRSlGgVTegDaBZHQKHecW0qpcZ1fZQoaAZoCWgPQwilEMglDq9hQJSGlFKUaBVN6ANoFkdAod+MiOearnV9lChoBmgJaA9DCGvwviqXBWNAlIaUUpRoFU3oA2gWR0Ch5aOQIUrTdX2UKGgGaAloD0MIRdWvdD4nWkCUhpRSlGgVTegDaBZHQKHpIZtvXK91fZQoaAZoCWgPQwgLKT+pdldhQJSGlFKUaBVN6ANoFkdAoelirzXjEXV9lChoBmgJaA9DCEYMO4xJPGBAlIaUUpRoFU3oA2gWR0Ch6XRMewLWdX2UKGgGaAloD0MI2INJ8fG6ZUCUhpRSlGgVTegDaBZHQKHqVhzeXRh1fZQoaAZoCWgPQwg4a/C+qu1gQJSGlFKUaBVN6ANoFkdAoer+RLbpNnV9lChoBmgJaA9DCG9kHvkD0WZAlIaUUpRoFU3oA2gWR0Ch9nq+ajN7dX2UKGgGaAloD0MIt7WF56XjYkCUhpRSlGgVTegDaBZHQKH3PnIQvpR1fZQoaAZoCWgPQwiL3qmA+5RnQJSGlFKUaBVN6ANoFkdAofdUn7YTTXV9lChoBmgJaA9DCJT43Al2RmBAlIaUUpRoFU3oA2gWR0Ch/K1mz0HydX2UKGgGaAloD0MIPGagMv5UXkCUhpRSlGgVTegDaBZHQKH9Nkc0cfh1fZQoaAZoCWgPQwiutmJ/2TtbQJSGlFKUaBVN6ANoFkdAogBXbXYlIHV9lChoBmgJaA9DCHmRCfg1yVxAlIaUUpRoFU3oA2gWR0CiAImlyimEdX2UKGgGaAloD0MIxQJf0S0KY0CUhpRSlGgVTegDaBZHQKIGOvYe1a51fZQoaAZoCWgPQwheZW1TPFtdQJSGlFKUaBVN6ANoFkdAogiWkN4JNXV9lChoBmgJaA9DCCQO2UC6iGFAlIaUUpRoFU3oA2gWR0CiCbMzdk8SdX2UKGgGaAloD0MIGysxz0qiXkCUhpRSlGgVTegDaBZHQKIPuP4mCy11fZQoaAZoCWgPQwjfqBWm7wpjQJSGlFKUaBVN6ANoFkdAohMLvJA+p3V9lChoBmgJaA9DCOxrXWoE/GFAlIaUUpRoFU3oA2gWR0CiE0olMRHxdX2UKGgGaAloD0MIc6JdhZSzXECUhpRSlGgVTegDaBZHQKITWzcAR051fZQoaAZoCWgPQwiQos7cQwtkQJSGlFKUaBVN6ANoFkdAohQ8tTUAk3V9lChoBmgJaA9DCPC/lezYL15AlIaUUpRoFU3oA2gWR0CiFOewcHW0dX2UKGgGaAloD0MI12t6UFCyXUCUhpRSlGgVTegDaBZHQKIirxBmf5F1fZQoaAZoCWgPQwhwCFVqdgRiQJSGlFKUaBVN6ANoFkdAoiNgiaAnUnV9lChoBmgJaA9DCAiUTblC7GFAlIaUUpRoFU3oA2gWR0CiI3XdKujidX2UKGgGaAloD0MIyvyjb1I5Z0CUhpRSlGgVTegDaBZHQKIohpKSPlx1fZQoaAZoCWgPQwjP2m0XmkhhQJSGlFKUaBVN6ANoFkdAoikIxagVXXV9lChoBmgJaA9DCAqCx7d3lU9AlIaUUpRoFU0JAWgWR0CiKjGd7OVxdX2UKGgGaAloD0MIhlW8kflkZkCUhpRSlGgVTegDaBZHQKIr5/tpmEp1fZQoaAZoCWgPQwhD5zV2iYhgQJSGlFKUaBVN6ANoFkdAoiwWVu76HnV9lChoBmgJaA9DCFRuopZm6mFAlIaUUpRoFU3oA2gWR0CiMebtRekYdX2UKGgGaAloD0MIxEFClK/CYECUhpRSlGgVTegDaBZHQKI0VXzUZvV1fZQoaAZoCWgPQwjopPeNLyBhQJSGlFKUaBVN6ANoFkdAojVyuhbno3V9lChoBmgJaA9DCF+2nbbG5mNAlIaUUpRoFU3oA2gWR0CiO2K4hEBsdX2UKGgGaAloD0MIUmUYdwNkY0CUhpRSlGgVTegDaBZHQKI+smaYu011fZQoaAZoCWgPQwgYsyWrIkNkQJSGlFKUaBVN6ANoFkdAoj7wTM7lrHV9lChoBmgJaA9DCESkpl1Mq2RAlIaUUpRoFU3oA2gWR0CiPwEiMYMwdX2UKGgGaAloD0MIPpepSXAxZkCUhpRSlGgVTegDaBZHQKI/2cbR4Ql1fZQoaAZoCWgPQwjaci7FVSRkQJSGlFKUaBVN6ANoFkdAokB5yuIRAnV9lChoBmgJaA9DCAzNdRppAWJAlIaUUpRoFU3oA2gWR0CiTH1r6+FldX2UKGgGaAloD0MI2qoksg9pXECUhpRSlGgVTegDaBZHQKJMkrbxmTV1fZQoaAZoCWgPQwgS91j6UOxhQJSGlFKUaBVN6ANoFkdAolHhJmNBGHV9lChoBmgJaA9DCCqRRC+jwmRAlIaUUpRoFU3oA2gWR0CiUmAFotcwdX2UKGgGaAloD0MIBcJOsWp2YkCUhpRSlGgVTegDaBZHQKJTiIRh+fB1fZQoaAZoCWgPQwiJ6xhXXNJkQJSGlFKUaBVN6ANoFkdAolU2GVRk3HV9lChoBmgJaA9DCI16iEZ312FAlIaUUpRoFU3oA2gWR0CiVWb2Dg62dX2UKGgGaAloD0MILzVCP1NIYUCUhpRSlGgVTegDaBZHQKJbGVqveP91fZQoaAZoCWgPQwiqRq8GKK1aQJSGlFKUaBVN6ANoFkdAol1+rU9ZBHV9lChoBmgJaA9DCJz7q8d9SF1AlIaUUpRoFU3oA2gWR0CiXpi3w1BMdX2UKGgGaAloD0MI66f/rPlcZUCUhpRSlGgVTegDaBZHQKJkYYWtU4t1fZQoaAZoCWgPQwipTZzc719jQJSGlFKUaBVN6ANoFkdAomeN5le4TnV9lChoBmgJaA9DCAiSdw7l3GJAlIaUUpRoFU3oA2gWR0CiZ8hfKISEdX2UKGgGaAloD0MIKIHNOXhRYkCUhpRSlGgVTegDaBZHQKJn2K9f1Hx1fZQoaAZoCWgPQwg/j1Ge+XdlQJSGlFKUaBVN6ANoFkdAomikcn3L3nV9lChoBmgJaA9DCFopBHKJR2FAlIaUUpRoFU3oA2gWR0CiaUXtrsSkdX2UKGgGaAloD0MIZw+0AkNFY0CUhpRSlGgVTegDaBZHQKJryebutwJ1fZQoaAZoCWgPQwhXXByVm7laQJSGlFKUaBVN6ANoFkdAonU+VJL/THV9lChoBmgJaA9DCP7RN2kaFCFAlIaUUpRoFUvTaBZHQKJ3ohY/3WZ1fZQoaAZoCWgPQwhE393KEuphQJSGlFKUaBVN6ANoFkdAonozCzkZJnV9lChoBmgJaA9DCFgBvtu85WVAlIaUUpRoFU3oA2gWR0Cieq0aQ3gldX2UKGgGaAloD0MI5/7qcd+lYkCUhpRSlGgVTegDaBZHQKJ7xu76Hj91fZQoaAZoCWgPQwhhqpm1FFliQJSGlFKUaBVN6ANoFkdAon1Fw1ivxHV9lChoBmgJaA9DCGEzwAXZvF9AlIaUUpRoFU3oA2gWR0CifXLns9jgdX2UKGgGaAloD0MIpPs5Bfm0YUCUhpRSlGgVTegDaBZHQKKCZlYEGJN1fZQoaAZoCWgPQwg6sYf2sQVjQJSGlFKUaBVN6ANoFkdAooRtxjriVHV9lChoBmgJaA9DCE+TGW+rP2BAlIaUUpRoFU3oA2gWR0CihWIEKVpsdX2UKGgGaAloD0MI84++SdMAZECUhpRSlGgVTegDaBZHQKKKu23rleZ1fZQoaAZoCWgPQwhsCfmgZzVfQJSGlFKUaBVN6ANoFkdAoo3Mgntv43V9lChoBmgJaA9DCGfSpuoeGF5AlIaUUpRoFU3oA2gWR0Cijgqo60Y1dX2UKGgGaAloD0MIvEG0VjRvZ0CUhpRSlGgVTegDaBZHQKKOGriEQGx1fZQoaAZoCWgPQwi693DJcftlQJSGlFKUaBVN6ANoFkdAoo+NQO4G2XV9lChoBmgJaA9DCH9LAP6phmFAlIaUUpRoFU3oA2gWR0CikjE8RtgsdX2UKGgGaAloD0MIySB3ESa0ZUCUhpRSlGgVTegDaBZHQKKSRUqhDgJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
hf_rl_unit1_cmd_lunarlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b3ef3c3e3221d9ced4a2885fa3a2babff585960d5e10b1ce9527165b9a80a52
3
+ size 147218
hf_rl_unit1_cmd_lunarlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
hf_rl_unit1_cmd_lunarlander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff48c13ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff48c13f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff48c17040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff48c170d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eff48c17160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eff48c171f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff48c17280>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eff48c17310>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff48c173a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff48c17430>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff48c174c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7eff48c11660>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672094016198508970,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLwj1vaME+mCTFuhW0dr6tp1Q9NOKsvAAAAAAAAAAAZgfNveGeiLp62Ik7cSOLODGtJTs1HRe5AACAPwAAgD/ALqG9KUgyuuVHhjerT8QwKyMRusobm7YAAIA/AACAPwACYz6Mhjg+ijgjvmnMDL5YXre8is10vQAAAAAAAAAAzU/HvXsWjbp+gcU4s2GTMwUquzhTL+O3AACAPwAAAABARYA9UJepPzsGTD5SKce+uDvQPXYAij0AAAAAAAAAAAAAKLkdnQk/QUy8vYYTZL6MwUq9A6YsvQAAAAAAAAAAM32QvAW5hLtwZZU8dAt3POAgwTyeEVW9AACAPwAAgD/242O+XzelPMI6CTtE7Xm5JOUuvpeWNroAAIA/AACAP4AXKL1IJ5a6llGMuaA8irQrmMY6a0iiOAAAgD8AAIA/AILbPI8WUboS+W+6LeVANsdS6jlDEYo5AACAPwAAgD+aU5e8j0Z1utR5LDjqpRK2YIWaOvQBRrcAAIA/AACAP0Ctnj2pY7c/JWamPqPyh77kfuU9lR2EPQAAAAAAAAAAZqYZvcMpG7rf24Y6tpWtNkZGgDpqap25AACAPwAAgD8AuA67KdAEugJ//LvD31U1wAnjum79wrQAAIA/AACAP10chj6WkRY/nizyvUdUaL4qm/C6gsGzPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoDaq04GQZUCUhpRSlIwBbJRN6AOMAXSUR0ChonUOEug6dX2UKGgGaAloD0MI3uS36GQhZECUhpRSlGgVTegDaBZHQKGjMjdHlOp1fZQoaAZoCWgPQwjTS4xlei5jQJSGlFKUaBVN6ANoFkdAoaNIQUYbbXV9lChoBmgJaA9DCObOTDAc+WRAlIaUUpRoFU3oA2gWR0ChqHVi4J/odX2UKGgGaAloD0MIcJo+O+ACY0CUhpRSlGgVTegDaBZHQKGo73s5XEJ1fZQoaAZoCWgPQwiaRL3gU39gQJSGlFKUaBVN6ANoFkdAoavJ73PAwnV9lChoBmgJaA9DCJp63SKw4GFAlIaUUpRoFU3oA2gWR0Chq/Z9NN8FdX2UKGgGaAloD0MIbvyJyoZxYUCUhpRSlGgVTegDaBZHQKGxNHp8neB1fZQoaAZoCWgPQwjw4CcOoHBfQJSGlFKUaBVN6ANoFkdAobN+lfqoqHV9lChoBmgJaA9DCPiKbr0mTmNAlIaUUpRoFU3oA2gWR0Chs/jLbHp9dX2UKGgGaAloD0MIyQImcGveY0CUhpRSlGgVTegDaBZHQKG0jRdhRZV1fZQoaAZoCWgPQwiv0XKgh2RkQJSGlFKUaBVN6ANoFkdAobn4fjjrA3V9lChoBmgJaA9DCBu+hXVjKGRAlIaUUpRoFU3oA2gWR0ChvSCLuQZGdX2UKGgGaAloD0MIW0QUkzfwJ0CUhpRSlGgVTSUBaBZHQKG9XS3solV1fZQoaAZoCWgPQwgyAFRxY2BiQJSGlFKUaBVN6ANoFkdAob1tcbBGhHV9lChoBmgJaA9DCKEQAYdQLF9AlIaUUpRoFU3oA2gWR0Chvk0NKAavdX2UKGgGaAloD0MI/U6TGe/AYkCUhpRSlGgVTegDaBZHQKG+8SlnAZd1fZQoaAZoCWgPQwgDlfHvM3RmQJSGlFKUaBVN6ANoFkdAocwK1PWQOnV9lChoBmgJaA9DCKAy/n1GHmJAlIaUUpRoFU3oA2gWR0ChzRVmJ3xGdX2UKGgGaAloD0MIizbHuU1hXUCUhpRSlGgVTegDaBZHQKHNNF3IMjN1fZQoaAZoCWgPQwjBAMKHEvpcQJSGlFKUaBVN6ANoFkdAodK1zS1E3XV9lChoBmgJaA9DCPOspBXfdltAlIaUUpRoFU3oA2gWR0Ch0zfkWAPNdX2UKGgGaAloD0MItYtppnsPYkCUhpRSlGgVTegDaBZHQKHWGi1y/9J1fZQoaAZoCWgPQwhortNIS6hhQJSGlFKUaBVN6ANoFkdAodZJsl9jPXV9lChoBmgJaA9DCGO2ZFUEGGRAlIaUUpRoFU3oA2gWR0Ch3ArqUu+RdX2UKGgGaAloD0MIfGDHf4HsZECUhpRSlGgVTegDaBZHQKHecW0qpcZ1fZQoaAZoCWgPQwilEMglDq9hQJSGlFKUaBVN6ANoFkdAod+MiOearnV9lChoBmgJaA9DCGvwviqXBWNAlIaUUpRoFU3oA2gWR0Ch5aOQIUrTdX2UKGgGaAloD0MIRdWvdD4nWkCUhpRSlGgVTegDaBZHQKHpIZtvXK91fZQoaAZoCWgPQwgLKT+pdldhQJSGlFKUaBVN6ANoFkdAoelirzXjEXV9lChoBmgJaA9DCEYMO4xJPGBAlIaUUpRoFU3oA2gWR0Ch6XRMewLWdX2UKGgGaAloD0MI2INJ8fG6ZUCUhpRSlGgVTegDaBZHQKHqVhzeXRh1fZQoaAZoCWgPQwg4a/C+qu1gQJSGlFKUaBVN6ANoFkdAoer+RLbpNnV9lChoBmgJaA9DCG9kHvkD0WZAlIaUUpRoFU3oA2gWR0Ch9nq+ajN7dX2UKGgGaAloD0MIt7WF56XjYkCUhpRSlGgVTegDaBZHQKH3PnIQvpR1fZQoaAZoCWgPQwiL3qmA+5RnQJSGlFKUaBVN6ANoFkdAofdUn7YTTXV9lChoBmgJaA9DCJT43Al2RmBAlIaUUpRoFU3oA2gWR0Ch/K1mz0HydX2UKGgGaAloD0MIPGagMv5UXkCUhpRSlGgVTegDaBZHQKH9Nkc0cfh1fZQoaAZoCWgPQwiutmJ/2TtbQJSGlFKUaBVN6ANoFkdAogBXbXYlIHV9lChoBmgJaA9DCHmRCfg1yVxAlIaUUpRoFU3oA2gWR0CiAImlyimEdX2UKGgGaAloD0MIxQJf0S0KY0CUhpRSlGgVTegDaBZHQKIGOvYe1a51fZQoaAZoCWgPQwheZW1TPFtdQJSGlFKUaBVN6ANoFkdAogiWkN4JNXV9lChoBmgJaA9DCCQO2UC6iGFAlIaUUpRoFU3oA2gWR0CiCbMzdk8SdX2UKGgGaAloD0MIGysxz0qiXkCUhpRSlGgVTegDaBZHQKIPuP4mCy11fZQoaAZoCWgPQwjfqBWm7wpjQJSGlFKUaBVN6ANoFkdAohMLvJA+p3V9lChoBmgJaA9DCOxrXWoE/GFAlIaUUpRoFU3oA2gWR0CiE0olMRHxdX2UKGgGaAloD0MIc6JdhZSzXECUhpRSlGgVTegDaBZHQKITWzcAR051fZQoaAZoCWgPQwiQos7cQwtkQJSGlFKUaBVN6ANoFkdAohQ8tTUAk3V9lChoBmgJaA9DCPC/lezYL15AlIaUUpRoFU3oA2gWR0CiFOewcHW0dX2UKGgGaAloD0MI12t6UFCyXUCUhpRSlGgVTegDaBZHQKIirxBmf5F1fZQoaAZoCWgPQwhwCFVqdgRiQJSGlFKUaBVN6ANoFkdAoiNgiaAnUnV9lChoBmgJaA9DCAiUTblC7GFAlIaUUpRoFU3oA2gWR0CiI3XdKujidX2UKGgGaAloD0MIyvyjb1I5Z0CUhpRSlGgVTegDaBZHQKIohpKSPlx1fZQoaAZoCWgPQwjP2m0XmkhhQJSGlFKUaBVN6ANoFkdAoikIxagVXXV9lChoBmgJaA9DCAqCx7d3lU9AlIaUUpRoFU0JAWgWR0CiKjGd7OVxdX2UKGgGaAloD0MIhlW8kflkZkCUhpRSlGgVTegDaBZHQKIr5/tpmEp1fZQoaAZoCWgPQwhD5zV2iYhgQJSGlFKUaBVN6ANoFkdAoiwWVu76HnV9lChoBmgJaA9DCFRuopZm6mFAlIaUUpRoFU3oA2gWR0CiMebtRekYdX2UKGgGaAloD0MIxEFClK/CYECUhpRSlGgVTegDaBZHQKI0VXzUZvV1fZQoaAZoCWgPQwjopPeNLyBhQJSGlFKUaBVN6ANoFkdAojVyuhbno3V9lChoBmgJaA9DCF+2nbbG5mNAlIaUUpRoFU3oA2gWR0CiO2K4hEBsdX2UKGgGaAloD0MIUmUYdwNkY0CUhpRSlGgVTegDaBZHQKI+smaYu011fZQoaAZoCWgPQwgYsyWrIkNkQJSGlFKUaBVN6ANoFkdAoj7wTM7lrHV9lChoBmgJaA9DCESkpl1Mq2RAlIaUUpRoFU3oA2gWR0CiPwEiMYMwdX2UKGgGaAloD0MIPpepSXAxZkCUhpRSlGgVTegDaBZHQKI/2cbR4Ql1fZQoaAZoCWgPQwjaci7FVSRkQJSGlFKUaBVN6ANoFkdAokB5yuIRAnV9lChoBmgJaA9DCAzNdRppAWJAlIaUUpRoFU3oA2gWR0CiTH1r6+FldX2UKGgGaAloD0MI2qoksg9pXECUhpRSlGgVTegDaBZHQKJMkrbxmTV1fZQoaAZoCWgPQwgS91j6UOxhQJSGlFKUaBVN6ANoFkdAolHhJmNBGHV9lChoBmgJaA9DCCqRRC+jwmRAlIaUUpRoFU3oA2gWR0CiUmAFotcwdX2UKGgGaAloD0MIBcJOsWp2YkCUhpRSlGgVTegDaBZHQKJTiIRh+fB1fZQoaAZoCWgPQwiJ6xhXXNJkQJSGlFKUaBVN6ANoFkdAolU2GVRk3HV9lChoBmgJaA9DCI16iEZ312FAlIaUUpRoFU3oA2gWR0CiVWb2Dg62dX2UKGgGaAloD0MILzVCP1NIYUCUhpRSlGgVTegDaBZHQKJbGVqveP91fZQoaAZoCWgPQwiqRq8GKK1aQJSGlFKUaBVN6ANoFkdAol1+rU9ZBHV9lChoBmgJaA9DCJz7q8d9SF1AlIaUUpRoFU3oA2gWR0CiXpi3w1BMdX2UKGgGaAloD0MI66f/rPlcZUCUhpRSlGgVTegDaBZHQKJkYYWtU4t1fZQoaAZoCWgPQwipTZzc719jQJSGlFKUaBVN6ANoFkdAomeN5le4TnV9lChoBmgJaA9DCAiSdw7l3GJAlIaUUpRoFU3oA2gWR0CiZ8hfKISEdX2UKGgGaAloD0MIKIHNOXhRYkCUhpRSlGgVTegDaBZHQKJn2K9f1Hx1fZQoaAZoCWgPQwg/j1Ge+XdlQJSGlFKUaBVN6ANoFkdAomikcn3L3nV9lChoBmgJaA9DCFopBHKJR2FAlIaUUpRoFU3oA2gWR0CiaUXtrsSkdX2UKGgGaAloD0MIZw+0AkNFY0CUhpRSlGgVTegDaBZHQKJryebutwJ1fZQoaAZoCWgPQwhXXByVm7laQJSGlFKUaBVN6ANoFkdAonU+VJL/THV9lChoBmgJaA9DCP7RN2kaFCFAlIaUUpRoFUvTaBZHQKJ3ohY/3WZ1fZQoaAZoCWgPQwhE393KEuphQJSGlFKUaBVN6ANoFkdAonozCzkZJnV9lChoBmgJaA9DCFgBvtu85WVAlIaUUpRoFU3oA2gWR0Cieq0aQ3gldX2UKGgGaAloD0MI5/7qcd+lYkCUhpRSlGgVTegDaBZHQKJ7xu76Hj91fZQoaAZoCWgPQwhhqpm1FFliQJSGlFKUaBVN6ANoFkdAon1Fw1ivxHV9lChoBmgJaA9DCGEzwAXZvF9AlIaUUpRoFU3oA2gWR0CifXLns9jgdX2UKGgGaAloD0MIpPs5Bfm0YUCUhpRSlGgVTegDaBZHQKKCZlYEGJN1fZQoaAZoCWgPQwg6sYf2sQVjQJSGlFKUaBVN6ANoFkdAooRtxjriVHV9lChoBmgJaA9DCE+TGW+rP2BAlIaUUpRoFU3oA2gWR0CihWIEKVpsdX2UKGgGaAloD0MI84++SdMAZECUhpRSlGgVTegDaBZHQKKKu23rleZ1fZQoaAZoCWgPQwhsCfmgZzVfQJSGlFKUaBVN6ANoFkdAoo3Mgntv43V9lChoBmgJaA9DCGfSpuoeGF5AlIaUUpRoFU3oA2gWR0Cijgqo60Y1dX2UKGgGaAloD0MIvEG0VjRvZ0CUhpRSlGgVTegDaBZHQKKOGriEQGx1fZQoaAZoCWgPQwi693DJcftlQJSGlFKUaBVN6ANoFkdAoo+NQO4G2XV9lChoBmgJaA9DCH9LAP6phmFAlIaUUpRoFU3oA2gWR0CikjE8RtgsdX2UKGgGaAloD0MIySB3ESa0ZUCUhpRSlGgVTegDaBZHQKKSRUqhDgJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
hf_rl_unit1_cmd_lunarlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf9058615b0388a78a3a0d8aefedd2916ff778ab7338bb2ba51051d098fe79b
3
+ size 87929
hf_rl_unit1_cmd_lunarlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef735f743400e195a8417474efeb3dd7148ae80d6ccbf4bd7e72c582375ce582
3
+ size 43201
hf_rl_unit1_cmd_lunarlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
hf_rl_unit1_cmd_lunarlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (230 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 227.4069635411072, "std_reward": 72.2609676595126, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-26T23:44:57.081898"}