File size: 21,903 Bytes
c35e44e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
---
base_model: indobenchmark/indobert-base-p2
datasets:
- afaji/indonli
language:
- id
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6915
- loss:SoftmaxLoss
widget:
- source_sentence: Pesta Olahraga Asia Tenggara atau Southeast Asian Games, biasa
disingkat SEA Games, adalah ajang olahraga yang diadakan setiap dua tahun dan
melibatkan 11 negara Asia Tenggara.
sentences:
- Sekarang tahun 2017.
- Warna kulit tidak mempengaruhi waktu berjemur yang baik untuk mengatifkan pro-vitamin
D3.
- Pesta Olahraga Asia Tenggara diadakan setiap tahun.
- source_sentence: Menjalani aktivitas Ramadhan di tengah wabah Corona tentunya tidak
mudah.
sentences:
- Tidak ada observasi yang pernah dilansir oleh Business Insider.
- Wabah Corona membuat aktivitas Ramadhan tidak mudah dijalani.
- Piala Sudirman pertama digelar pada tahun 1989.
- source_sentence: Dalam bidang politik, partai ini memperjuangkan agar kekuasaan
sepenuhnya berada di tangan rakyat.
sentences:
- Galileo tidak berhasil mengetes hasil dari Hukum Inert.
- Kudeta 14 Februari 1946 gagal merebut kekuasaan Belanda.
- Partai ini berusaha agar kekuasaan sepenuhnya berada di tangan rakyat.
- source_sentence: Keluarga mendiang Prince menuduh layanan musik streaming Tidal
memasukkan karya milik sang penyanyi legendaris tanpa izin .
sentences:
- Rosier adalah pelayan setia Lord Voldemort.
- Bangunan ini digunakan untuk penjualan.
- Keluarga mendiang Prince sudah memberi izin kepada TImbal untuk menggunakan lagu
milik Prince.
- source_sentence: Tujuan dari acara dengar pendapat CRTC adalah untuk mengumpulkan
respons dari pada pemangku kepentingan industri ini dan dari masyarakat umum.
sentences:
- Pembuat Rooms hanya bisa membuat meeting yang terbuka.
- Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar pendapat
CRTC.
- Eminem dirasa tidak akan memulai kembali kariernya tahun ini.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.6027226710720388
name: Pearson Cosine
- type: spearman_cosine
value: 0.5828122556183322
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5865637873532972
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5646745853309448
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5929829731938223
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5686448857290627
name: Spearman Euclidean
- type: pearson_dot
value: 0.5979483667153003
name: Pearson Dot
- type: spearman_dot
value: 0.5928346499987958
name: Spearman Dot
- type: pearson_max
value: 0.6027226710720388
name: Pearson Max
- type: spearman_max
value: 0.5928346499987958
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.29752953323287884
name: Pearson Cosine
- type: spearman_cosine
value: 0.26804775967587074
name: Spearman Cosine
- type: pearson_manhattan
value: 0.2519074599400818
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.24226962957953038
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.26198515666148037
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.2449838180623571
name: Spearman Euclidean
- type: pearson_dot
value: 0.32041136820361227
name: Pearson Dot
- type: spearman_dot
value: 0.3038800429933888
name: Spearman Dot
- type: pearson_max
value: 0.32041136820361227
name: Pearson Max
- type: spearman_max
value: 0.3038800429933888
name: Spearman Max
---
# SentenceTransformer based on indobenchmark/indobert-base-p2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
- **Language:** id
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cassador/2bs8lr2")
# Run inference
sentences = [
'Tujuan dari acara dengar pendapat CRTC adalah untuk mengumpulkan respons dari pada pemangku kepentingan industri ini dan dari masyarakat umum.',
'Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar pendapat CRTC.',
'Pembuat Rooms hanya bisa membuat meeting yang terbuka.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6027 |
| **spearman_cosine** | **0.5828** |
| pearson_manhattan | 0.5866 |
| spearman_manhattan | 0.5647 |
| pearson_euclidean | 0.593 |
| spearman_euclidean | 0.5686 |
| pearson_dot | 0.5979 |
| spearman_dot | 0.5928 |
| pearson_max | 0.6027 |
| spearman_max | 0.5928 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.2975 |
| **spearman_cosine** | **0.268** |
| pearson_manhattan | 0.2519 |
| spearman_manhattan | 0.2423 |
| pearson_euclidean | 0.262 |
| spearman_euclidean | 0.245 |
| pearson_dot | 0.3204 |
| spearman_dot | 0.3039 |
| pearson_max | 0.3204 |
| spearman_max | 0.3039 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### afaji/indonli
* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
* Size: 6,915 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 12 tokens</li><li>mean: 29.26 tokens</li><li>max: 135 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.13 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~51.00%</li><li>1: ~49.00%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|:---------------|
| <code>Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini.</code> | <code>Prediksi akhir wabah tidak disampaikan Jokowi.</code> | <code>0</code> |
| <code>Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>Masker sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>1</code> |
| <code>Seperti namanya, paket internet sahur Telkomsel ini ditujukan bagi pengguna yang menginginkan kuota ekstra, untuk menemani momen sahur sepanjang bulan puasa.</code> | <code>Paket internet sahur tidak ditujukan untuk saat sahur.</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Evaluation Dataset
#### afaji/indonli
* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
* Size: 1,556 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 9 tokens</li><li>mean: 28.07 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.15 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~47.90%</li><li>1: ~52.10%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:---------------|
| <code>Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020).</code> | <code>Manuskrip tersebut tidak mencatat laporan kematian.</code> | <code>0</code> |
| <code>Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu.</code> | <code>Tidak ada observasi yang pernah dilansir oleh Business Insider.</code> | <code>0</code> |
| <code>Seorang wanita asal New York mengaku sangat benci air putih.</code> | <code>Tidak ada orang dari New York yang membenci air putih.</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
| 0 | 0 | - | - | 0.1277 | - |
| 0.1156 | 100 | 0.6407 | - | - | - |
| 0.2312 | 200 | 0.5119 | - | - | - |
| 0.3468 | 300 | 0.5192 | - | - | - |
| 0.4624 | 400 | 0.5104 | - | - | - |
| 0.5780 | 500 | 0.5087 | - | - | - |
| 0.6936 | 600 | 0.515 | - | - | - |
| 0.8092 | 700 | 0.4965 | - | - | - |
| 0.9249 | 800 | 0.4771 | - | - | - |
| 1.0 | 865 | - | 0.4387 | 0.5481 | - |
| 1.0405 | 900 | 0.4122 | - | - | - |
| 1.1561 | 1000 | 0.3551 | - | - | - |
| 1.2717 | 1100 | 0.3332 | - | - | - |
| 1.3873 | 1200 | 0.3297 | - | - | - |
| 1.5029 | 1300 | 0.3292 | - | - | - |
| 1.6185 | 1400 | 0.3646 | - | - | - |
| 1.7341 | 1500 | 0.3375 | - | - | - |
| 1.8497 | 1600 | 0.3257 | - | - | - |
| 1.9653 | 1700 | 0.385 | - | - | - |
| 2.0 | 1730 | - | 0.4650 | 0.5828 | 0.2680 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |