metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10330
- loss:MultipleNegativesRankingLoss
base_model: indobenchmark/indobert-base-p2
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: -0.0979039836743928
name: Pearson Cosine
- type: spearman_cosine
value: -0.10370853946172742
name: Spearman Cosine
- type: pearson_manhattan
value: -0.0986716229567464
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.10051590980192249
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.09806801008727767
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.09978077307233649
name: Spearman Euclidean
- type: pearson_dot
value: -0.08215757856369725
name: Pearson Dot
- type: spearman_dot
value: -0.08205505573726227
name: Spearman Dot
- type: pearson_max
value: -0.08215757856369725
name: Pearson Max
- type: spearman_max
value: -0.08205505573726227
name: Spearman Max
- type: pearson_cosine
value: -0.02784985879772803
name: Pearson Cosine
- type: spearman_cosine
value: -0.03497736614462515
name: Spearman Cosine
- type: pearson_manhattan
value: -0.03551617173397621
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.03865758617690966
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.0355939001168591
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.03886934284409788
name: Spearman Euclidean
- type: pearson_dot
value: -0.009209251203106355
name: Pearson Dot
- type: spearman_dot
value: -0.006641745341724743
name: Spearman Dot
- type: pearson_max
value: -0.009209251203106355
name: Pearson Max
- type: spearman_max
value: -0.006641745341724743
name: Spearman Max
SentenceTransformer based on indobenchmark/indobert-base-p2
This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: indobenchmark/indobert-base-p2
- Maximum Sequence Length: 200 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.',
'Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.',
'Gereja Baptis biasanya cenderung membentuk kelompok sendiri.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.0979 |
spearman_cosine | -0.1037 |
pearson_manhattan | -0.0987 |
spearman_manhattan | -0.1005 |
pearson_euclidean | -0.0981 |
spearman_euclidean | -0.0998 |
pearson_dot | -0.0822 |
spearman_dot | -0.0821 |
pearson_max | -0.0822 |
spearman_max | -0.0821 |
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.0278 |
spearman_cosine | -0.035 |
pearson_manhattan | -0.0355 |
spearman_manhattan | -0.0387 |
pearson_euclidean | -0.0356 |
spearman_euclidean | -0.0389 |
pearson_dot | -0.0092 |
spearman_dot | -0.0066 |
pearson_max | -0.0092 |
spearman_max | -0.0066 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,330 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 10 tokens
- mean: 30.59 tokens
- max: 128 tokens
- min: 6 tokens
- mean: 11.93 tokens
- max: 37 tokens
- 0: ~33.50%
- 1: ~32.70%
- 2: ~33.80%
- Samples:
sentence_0 sentence_1 label Ini adalah coup de grâce dan dorongan yang dibutuhkan oleh para pendatang untuk mendapatkan kemerdekaan mereka.
Pendatang tidak mendapatkan kemerdekaan.
2
Dua bayi almarhum Raja, Diana dan Suharna, diculik.
Jumlah bayi raja yang diculik sudah mencapai 2 bayi.
1
Sebuah penelitian menunjukkan bahwa mengkonsumsi makanan yang tinggi kadar gulanya bisa meningkatkan rasa haus.
Tidak ada penelitian yang bertopik makanan yang kadar gulanya tinggi.
2
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4num_train_epochs
: 20multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 20max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | sts-dev_spearman_max |
---|---|---|---|
0.0998 | 129 | - | -0.0821 |
0.0999 | 258 | - | -0.0541 |
0.1936 | 500 | 0.0322 | - |
0.1998 | 516 | - | -0.0474 |
0.2997 | 774 | - | -0.0369 |
0.3871 | 1000 | 0.0157 | - |
0.3995 | 1032 | - | -0.0371 |
0.4994 | 1290 | - | -0.0388 |
0.5807 | 1500 | 0.0109 | - |
0.5993 | 1548 | - | -0.0284 |
0.6992 | 1806 | - | -0.0293 |
0.7743 | 2000 | 0.0112 | - |
0.7991 | 2064 | - | -0.0176 |
0.8990 | 2322 | - | -0.0290 |
0.9679 | 2500 | 0.0104 | - |
0.9988 | 2580 | - | -0.0128 |
1.0 | 2583 | - | -0.0123 |
1.0987 | 2838 | - | -0.0200 |
1.1614 | 3000 | 0.0091 | - |
1.1986 | 3096 | - | -0.0202 |
1.2985 | 3354 | - | -0.0204 |
1.3550 | 3500 | 0.0052 | - |
1.3984 | 3612 | - | -0.0231 |
1.4983 | 3870 | - | -0.0312 |
1.5486 | 4000 | 0.0017 | - |
1.5981 | 4128 | - | -0.0277 |
1.6980 | 4386 | - | -0.0366 |
1.7422 | 4500 | 0.0054 | - |
1.7979 | 4644 | - | -0.0192 |
1.8978 | 4902 | - | -0.0224 |
1.9357 | 5000 | 0.0048 | - |
1.9977 | 5160 | - | -0.0240 |
2.0 | 5166 | - | -0.0248 |
2.0976 | 5418 | - | -0.0374 |
2.1293 | 5500 | 0.0045 | - |
2.1974 | 5676 | - | -0.0215 |
2.2973 | 5934 | - | -0.0329 |
2.3229 | 6000 | 0.0047 | - |
2.3972 | 6192 | - | -0.0284 |
2.4971 | 6450 | - | -0.0370 |
2.5165 | 6500 | 0.0037 | - |
2.5970 | 6708 | - | -0.0390 |
2.6969 | 6966 | - | -0.0681 |
2.7100 | 7000 | 0.0128 | - |
2.7967 | 7224 | - | -0.0343 |
2.8966 | 7482 | - | -0.0413 |
2.9036 | 7500 | 0.0055 | - |
2.9965 | 7740 | - | -0.0416 |
3.0 | 7749 | - | -0.0373 |
3.0964 | 7998 | - | -0.0630 |
3.0972 | 8000 | 0.0016 | - |
3.1963 | 8256 | - | -0.0401 |
3.2907 | 8500 | 0.0018 | - |
3.2962 | 8514 | - | -0.0303 |
3.3961 | 8772 | - | -0.0484 |
3.4843 | 9000 | 0.0017 | - |
3.4959 | 9030 | - | -0.0619 |
3.5958 | 9288 | - | -0.0411 |
3.6779 | 9500 | 0.007 | - |
3.6957 | 9546 | - | -0.0408 |
3.7956 | 9804 | - | -0.0368 |
3.8715 | 10000 | 0.0029 | - |
3.8955 | 10062 | - | -0.0429 |
3.9954 | 10320 | - | -0.0526 |
4.0 | 10332 | - | -0.0494 |
4.0650 | 10500 | 0.0004 | - |
4.0952 | 10578 | - | -0.0385 |
4.1951 | 10836 | - | -0.0467 |
4.2586 | 11000 | 0.0004 | - |
4.2950 | 11094 | - | -0.0500 |
4.3949 | 11352 | - | -0.0458 |
4.4522 | 11500 | 0.0011 | - |
4.4948 | 11610 | - | -0.0389 |
4.5947 | 11868 | - | -0.0401 |
4.6458 | 12000 | 0.0046 | - |
4.6945 | 12126 | - | -0.0370 |
4.7944 | 12384 | - | -0.0495 |
4.8393 | 12500 | 0.0104 | - |
4.8943 | 12642 | - | -0.0504 |
4.9942 | 12900 | - | -0.0377 |
5.0 | 12915 | - | -0.0379 |
5.0329 | 13000 | 0.0005 | - |
5.0941 | 13158 | - | -0.0617 |
5.1940 | 13416 | - | -0.0354 |
5.2265 | 13500 | 0.0006 | - |
5.2938 | 13674 | - | -0.0514 |
5.3937 | 13932 | - | -0.0615 |
5.4201 | 14000 | 0.0014 | - |
5.4936 | 14190 | - | -0.0574 |
5.5935 | 14448 | - | -0.0503 |
5.6136 | 14500 | 0.0025 | - |
5.6934 | 14706 | - | -0.0512 |
5.7933 | 14964 | - | -0.0316 |
5.8072 | 15000 | 0.0029 | - |
5.8931 | 15222 | - | -0.0475 |
5.9930 | 15480 | - | -0.0429 |
6.0 | 15498 | - | -0.0377 |
6.0008 | 15500 | 0.0003 | - |
6.0929 | 15738 | - | -0.0486 |
6.1928 | 15996 | - | -0.0512 |
6.1943 | 16000 | 0.0002 | - |
6.2927 | 16254 | - | -0.0383 |
6.3879 | 16500 | 0.0017 | - |
6.3926 | 16512 | - | -0.0460 |
6.4925 | 16770 | - | -0.0439 |
6.5815 | 17000 | 0.0046 | - |
6.5923 | 17028 | - | -0.0378 |
6.6922 | 17286 | - | -0.0289 |
6.7751 | 17500 | 0.0081 | - |
6.7921 | 17544 | - | -0.0415 |
6.8920 | 17802 | - | -0.0451 |
6.9686 | 18000 | 0.0021 | - |
6.9919 | 18060 | - | -0.0386 |
7.0 | 18081 | - | -0.0390 |
7.0918 | 18318 | - | -0.0460 |
7.1622 | 18500 | 0.0001 | - |
7.1916 | 18576 | - | -0.0510 |
7.2915 | 18834 | - | -0.0566 |
7.3558 | 19000 | 0.0009 | - |
7.3914 | 19092 | - | -0.0479 |
7.4913 | 19350 | - | -0.0456 |
7.5494 | 19500 | 0.0019 | - |
7.5912 | 19608 | - | -0.0371 |
7.6911 | 19866 | - | -0.0184 |
7.7429 | 20000 | 0.003 | - |
7.7909 | 20124 | - | -0.0312 |
7.8908 | 20382 | - | -0.0307 |
7.9365 | 20500 | 0.0008 | - |
7.9907 | 20640 | - | -0.0291 |
8.0 | 20664 | - | -0.0298 |
8.0906 | 20898 | - | -0.0452 |
8.1301 | 21000 | 0.0001 | - |
8.1905 | 21156 | - | -0.0405 |
8.2904 | 21414 | - | -0.0417 |
8.3237 | 21500 | 0.0007 | - |
8.3902 | 21672 | - | -0.0430 |
8.4901 | 21930 | - | -0.0487 |
8.5172 | 22000 | 0.0 | - |
8.5900 | 22188 | - | -0.0471 |
8.6899 | 22446 | - | -0.0361 |
8.7108 | 22500 | 0.0037 | - |
8.7898 | 22704 | - | -0.0443 |
8.8897 | 22962 | - | -0.0404 |
8.9044 | 23000 | 0.0009 | - |
8.9895 | 23220 | - | -0.0421 |
9.0 | 23247 | - | -0.0425 |
9.0894 | 23478 | - | -0.0451 |
9.0979 | 23500 | 0.0001 | - |
9.1893 | 23736 | - | -0.0458 |
9.2892 | 23994 | - | -0.0479 |
9.2915 | 24000 | 0.0 | - |
9.3891 | 24252 | - | -0.0400 |
9.4851 | 24500 | 0.0014 | - |
9.4890 | 24510 | - | -0.0374 |
9.5889 | 24768 | - | -0.0454 |
9.6787 | 25000 | 0.0075 | - |
9.6887 | 25026 | - | -0.0230 |
9.7886 | 25284 | - | -0.0345 |
9.8722 | 25500 | 0.0007 | - |
9.8885 | 25542 | - | -0.0301 |
9.9884 | 25800 | - | -0.0363 |
10.0 | 25830 | - | -0.0375 |
10.0658 | 26000 | 0.0001 | - |
10.0883 | 26058 | - | -0.0381 |
10.1882 | 26316 | - | -0.0386 |
10.2594 | 26500 | 0.0 | - |
10.2880 | 26574 | - | -0.0390 |
10.3879 | 26832 | - | -0.0366 |
10.4530 | 27000 | 0.0007 | - |
10.4878 | 27090 | - | -0.0464 |
10.5877 | 27348 | - | -0.0509 |
10.6465 | 27500 | 0.0021 | - |
10.6876 | 27606 | - | -0.0292 |
10.7875 | 27864 | - | -0.0514 |
10.8401 | 28000 | 0.0017 | - |
10.8873 | 28122 | - | -0.0485 |
10.9872 | 28380 | - | -0.0471 |
11.0 | 28413 | - | -0.0468 |
11.0337 | 28500 | 0.0 | - |
11.0871 | 28638 | - | -0.0460 |
11.1870 | 28896 | - | -0.0450 |
11.2273 | 29000 | 0.0 | - |
11.2869 | 29154 | - | -0.0457 |
11.3868 | 29412 | - | -0.0450 |
11.4208 | 29500 | 0.0008 | - |
11.4866 | 29670 | - | -0.0440 |
11.5865 | 29928 | - | -0.0384 |
11.6144 | 30000 | 0.0028 | - |
11.6864 | 30186 | - | -0.0066 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}