initial commit
Browse files- README.md +57 -0
- config.json +28 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
---
|
3 |
+
language:
|
4 |
+
- om
|
5 |
+
- am
|
6 |
+
- rw
|
7 |
+
- rn
|
8 |
+
- ha
|
9 |
+
- ig
|
10 |
+
- pcm
|
11 |
+
- so
|
12 |
+
- sw
|
13 |
+
- ti
|
14 |
+
- yo
|
15 |
+
- multilingual
|
16 |
+
|
17 |
+
---
|
18 |
+
# afriberta_base
|
19 |
+
## Model description
|
20 |
+
AfriBERTa base is a pretrained multilingual language model with around 111 million parameters.
|
21 |
+
The model has 8 layers, 6 attention heads, 768 hidden units and 3072 feed forward size.
|
22 |
+
The model was pretrained on 11 African languages namely - Afaan Oromoo (also called Oromo), Amharic, Gahuza (a mixed language containing Kinyarwanda and Kirundi), Hausa, Igbo, Nigerian Pidgin, Somali, Swahili, Tigrinya and Yorùbá.
|
23 |
+
The model has been shown to obtain competitive downstream performances on text classification and Named Entity Recognition on several African languages, including those it was not pretrained on.
|
24 |
+
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
#### How to use
|
29 |
+
You can use this model with Transformers for any downstream task.
|
30 |
+
For example, assuming we want to finetune this model on a token classification task, we do the following:
|
31 |
+
|
32 |
+
```python
|
33 |
+
>>> from transformers import AutoTokenizer, AutoModelForTokenClassification
|
34 |
+
>>> model = AutoModelForTokenClassification.from_pretrained("castorini/afriberta_base")
|
35 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("castorini/afriberta_base")
|
36 |
+
# we have to manually set the model max length because it is an imported sentencepiece model, which huggingface does not properly support right now
|
37 |
+
>>> tokenizer.model_max_length = 512
|
38 |
+
```
|
39 |
+
|
40 |
+
#### Limitations and bias
|
41 |
+
- This model is possibly limited by its training dataset which are majorly obtained from news articles from a specific span of time. Thus, it may not generalize well.
|
42 |
+
- This model is trained on very little data (less than 1 GB), hence it may not have seen enough data to learn very complex linguistic relations.
|
43 |
+
|
44 |
+
## Training data
|
45 |
+
The model was trained on an aggregation of datasets from the BBC news website and Common Crawl.
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
For information on training procedures, please refer to the AfriBERTa [paper]() or [repository](https://github.com/keleog/afriberta)
|
49 |
+
|
50 |
+
### BibTeX entry and citation info
|
51 |
+
```
|
52 |
+
Kelechi Ogueji, Yuxin Zhu, Jimmy Lin.
|
53 |
+
Small Data? No Problem! Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages
|
54 |
+
Proceedings of the 1st workshop on Multilingual Representation Learning at EMNLP 2021
|
55 |
+
```
|
56 |
+
|
57 |
+
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/Users/kelechogueji/Downloads/afriberta_base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_length": 512,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 6,
|
20 |
+
"num_hidden_layers": 8,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"transformers_version": "4.2.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 70006
|
28 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1b5507320b2175f5aa01cfbb9cd853fdf92dee491dde2359eae8919eb583a8a
|
3 |
+
size 446168989
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6419b3044bff45e94e0553cbb81425fd06046e9294b33555e23fdc69377dba6f
|
3 |
+
size 1554839
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "spm_models/spm_model_final_70k"}
|