File size: 2,191 Bytes
1f16ecb 28dd6aa 1f16ecb 9d078f3 1f16ecb 644fa88 1f16ecb 9d078f3 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb da82683 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb d662ff5 72b3c49 1f16ecb 134048a 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb 134048a 9d078f3 72b3c49 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb 72b3c49 1f16ecb 72b3c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- en
- es
pipeline_tag: text-generation
library_name: transformers
---
# B-GPT_en_es_sequential
This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on only Spanish data. At the end of training, 50% of training data seen by the model is English and 50% is Spanish. The tokenizer was trained on the same overall proportions of data as the language model at the final step.
## Model details:
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:
* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg
Training dataset: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.
## Use This Model
Load the model:
Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("catherinearnett/B-GPT_en_es_sequential")
model = AutoModel.from_pretrained("catherinearnett/B-GPT_en_es_sequential", revision = "128000")
````
Text Generation:
```
from transformers import pipeline
pipe = pipeline("text-generation", model="catherinearnett/B-GPT_en_es_sequential")
pipe("I am a")
```
## Citation
If you use this model, please cite:
```
```
|