File size: 2,221 Bytes
d3ba500
5b31540
 
 
 
 
 
 
 
 
 
d3ba500
224803f
d3ba500
33466ae
d3ba500
224803f
d3ba500
03cf0f1
 
 
d3ba500
03cf0f1
 
 
 
 
 
 
d3ba500
03b2739
d3ba500
03cf0f1
d3ba500
03cf0f1
d3ba500
03cf0f1
d3ba500
63ba9ca
 
03cf0f1
 
d3ba500
499d9f4
 
d3ba500
 
03cf0f1
d3ba500
03cf0f1
d3ba500
03cf0f1
 
d3ba500
499d9f4
224803f
03cf0f1
d3ba500
03cf0f1
d3ba500
03cf0f1
d3ba500
03cf0f1
d3ba500
03cf0f1
d3ba500
 
03cf0f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- en
- pl
pipeline_tag: text-generation
library_name: transformers
---

# B-GPT_en_pl_simultaneous

This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on a 50%-50% mix of English and Polish data. At the end of training, 75% of training data seen by the model is English and 25% is Polish. The tokenizer was trained on the same overall proportions of data as the language model at the final step. 

## Model details:

All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:

* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg

Training dataset: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)

Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.

## Use This Model

Load the model:

Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.

```
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("catherinearnett/B-GPT_en_pl_simultaneous")
model = AutoModel.from_pretrained("catherinearnett/B-GPT_en_pl_simultaneous", revision = "128000")


````

Text Generation:

```
from transformers import pipeline

pipe = pipeline("text-generation", model="catherinearnett/B-GPT_en_pl_simultaneous")
    
pipe("I am a")

```

## Citation

If you use this model, please cite:

```


```