--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: google/canine-c model-index: - name: canine-c-finetuned-sst2 results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: sst2 metrics: - type: accuracy value: 0.8486238532110092 name: Accuracy --- # canine-c-finetuned-sst2 This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6025 - Accuracy: 0.8486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9121586874695155e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3415 | 1.0 | 2105 | 0.4196 | 0.8280 | | 0.2265 | 2.0 | 4210 | 0.4924 | 0.8211 | | 0.1439 | 3.0 | 6315 | 0.5726 | 0.8337 | | 0.0974 | 4.0 | 8420 | 0.6025 | 0.8486 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6