--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3853 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 datasets: [] metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 widget: - source_sentence: ' UDPv6TransportDescriptor ------------------------' sentences: - What is the primary purpose of the "Status" objects in the context of entities? - What is the main concept that this piece of code demonstrates, and how do the provided topology and QoS policy settings relate to it? - What is the primary characteristic of UDP transport in terms of connection establishment? - source_sentence: 'With a fragment size of 64 kB, the Publisher has to send about 1100 fragments to send the whole file. A possible configuration for this scenario could be:' sentences: - What is the likely reason why the Publisher needs to use "RELIABLE_ RELIABILITY_QOS" in this scenario? - What is the effect of defining a custom Metatraffic Unicast Locators on the behavior of a DomainParticipant? - What is the primary function of the transport layer in DDS, as described in the provided context? - source_sentence: '+------------------------------------+---------------------------------------------------+------------+ | QosPolicy class | Accessor/Mutator | Mutable | |====================================|===================================================|============| | RTPSEndpointQos | "endpoint()" | No | +------------------------------------+---------------------------------------------------+------------+' sentences: - What is the effect of setting "ON" as the DataSharingKind in the context of data-sharing delivery? - What is the purpose of the RTPSEndpointQos class in the context of DataWriter QoS policies? - What is the primary purpose of the RTPSEndpointQos policy in a DDS (Data Distribution Service) system? - source_sentence: "Note: When \"non_blocking_send\" is set to \"true\", send operations\ \ will\n return immediately if the send buffer might get full, but no error\n\ \ will be returned to the upper layer. This means that the application\n will\ \ behave as if the packet is sent and lost.When set to \"false\",\n send operations\ \ will block until the network buffer has space for\n the packet." sentences: - What happens when "non_blocking_send" is set to "true" in TCP transport? - What is the purpose of the "" element in the RTPS configuration? - What is the purpose of the "" value in the DisablePositiveAcks QoS policy? - source_sentence: 'After calling the "DataReader::read()" or "DataReader::take()" operations, accessing the data on the returned sequences is quite easy. The sequences API provides a **length()** operation returning the number of elements in the collections. The application code just needs to check this value and use the **[]** operator to access the corresponding elements. Elements on the DDS data sequence should only be accessed when the corresponding element on the SampleInfo sequence indicate that valid data is present. When using Data Sharing, it is also important to check that the sample is valid (i.e, not replaced, refer to DataReader and DataWriter history coupling for further information in this regard).' sentences: - What is the primary method described in the text for accessing data on returned sequences after calling "DataReader::read()" or "DataReader::take()" operations? - What is the primary advantage of using Shared Memory Transport (SHM) compared to other network transports like UDP/TCP? - What are the steps to install Fast DDS library, Python bindings, and Gen generation tool from sources in a Linux environment? pipeline_tag: sentence-similarity model-index: - name: Fine tuning poc1-30e results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.34265734265734266 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5291375291375291 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5757575757575758 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6643356643356644 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.34265734265734266 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17637917637917636 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11515151515151513 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06643356643356643 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.34265734265734266 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5291375291375291 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5757575757575758 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6643356643356644 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4999219586168879 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.44783734783734785 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.45732757969458965 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5314685314685315 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5804195804195804 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.655011655011655 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17715617715617715 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11608391608391608 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0655011655011655 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5314685314685315 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5804195804195804 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.655011655011655 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4931410715247713 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.44150664150664165 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4520914166409126 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.331002331002331 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5384615384615384 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5734265734265734 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.662004662004662 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.331002331002331 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1794871794871795 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11468531468531468 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0662004662004662 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.331002331002331 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5384615384615384 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5734265734265734 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.662004662004662 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4946456648216315 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4414687164687165 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4517532849343265 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.32867132867132864 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5291375291375291 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.578088578088578 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6643356643356644 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.32867132867132864 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17637917637917636 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11561771561771561 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06643356643356643 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.32867132867132864 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5291375291375291 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.578088578088578 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6643356643356644 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.491729303526411 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4370564620564619 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4465064100234966 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.317016317016317 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5058275058275058 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5734265734265734 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.655011655011655 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.317016317016317 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1686091686091686 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11468531468531468 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06550116550116548 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.317016317016317 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5058275058275058 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5734265734265734 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.655011655011655 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4805357725353263 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.42515355015355016 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.43416870212536746 name: Cosine Map@100 --- # Fine tuning poc1-30e This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-30-epochs") # Run inference sentences = [ 'After calling the "DataReader::read()" or "DataReader::take()"\noperations, accessing the data on the returned sequences is quite\neasy. The sequences API provides a **length()** operation returning\nthe number of elements in the collections. The application code just\nneeds to check this value and use the **[]** operator to access the\ncorresponding elements. Elements on the DDS data sequence should only\nbe accessed when the corresponding element on the SampleInfo sequence\nindicate that valid data is present. When using Data Sharing, it is\nalso important to check that the sample is valid (i.e, not replaced,\nrefer to DataReader and DataWriter history coupling for further\ninformation in this regard).', 'What is the primary method described in the text for accessing data on returned sequences after calling "DataReader::read()" or "DataReader::take()" operations?', 'What are the steps to install Fast DDS library, Python bindings, and Gen generation tool from sources in a Linux environment?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3427 | | cosine_accuracy@3 | 0.5291 | | cosine_accuracy@5 | 0.5758 | | cosine_accuracy@10 | 0.6643 | | cosine_precision@1 | 0.3427 | | cosine_precision@3 | 0.1764 | | cosine_precision@5 | 0.1152 | | cosine_precision@10 | 0.0664 | | cosine_recall@1 | 0.3427 | | cosine_recall@3 | 0.5291 | | cosine_recall@5 | 0.5758 | | cosine_recall@10 | 0.6643 | | cosine_ndcg@10 | 0.4999 | | cosine_mrr@10 | 0.4478 | | **cosine_map@100** | **0.4573** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.5315 | | cosine_accuracy@5 | 0.5804 | | cosine_accuracy@10 | 0.655 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.1772 | | cosine_precision@5 | 0.1161 | | cosine_precision@10 | 0.0655 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.5315 | | cosine_recall@5 | 0.5804 | | cosine_recall@10 | 0.655 | | cosine_ndcg@10 | 0.4931 | | cosine_mrr@10 | 0.4415 | | **cosine_map@100** | **0.4521** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.331 | | cosine_accuracy@3 | 0.5385 | | cosine_accuracy@5 | 0.5734 | | cosine_accuracy@10 | 0.662 | | cosine_precision@1 | 0.331 | | cosine_precision@3 | 0.1795 | | cosine_precision@5 | 0.1147 | | cosine_precision@10 | 0.0662 | | cosine_recall@1 | 0.331 | | cosine_recall@3 | 0.5385 | | cosine_recall@5 | 0.5734 | | cosine_recall@10 | 0.662 | | cosine_ndcg@10 | 0.4946 | | cosine_mrr@10 | 0.4415 | | **cosine_map@100** | **0.4518** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3287 | | cosine_accuracy@3 | 0.5291 | | cosine_accuracy@5 | 0.5781 | | cosine_accuracy@10 | 0.6643 | | cosine_precision@1 | 0.3287 | | cosine_precision@3 | 0.1764 | | cosine_precision@5 | 0.1156 | | cosine_precision@10 | 0.0664 | | cosine_recall@1 | 0.3287 | | cosine_recall@3 | 0.5291 | | cosine_recall@5 | 0.5781 | | cosine_recall@10 | 0.6643 | | cosine_ndcg@10 | 0.4917 | | cosine_mrr@10 | 0.4371 | | **cosine_map@100** | **0.4465** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.317 | | cosine_accuracy@3 | 0.5058 | | cosine_accuracy@5 | 0.5734 | | cosine_accuracy@10 | 0.655 | | cosine_precision@1 | 0.317 | | cosine_precision@3 | 0.1686 | | cosine_precision@5 | 0.1147 | | cosine_precision@10 | 0.0655 | | cosine_recall@1 | 0.317 | | cosine_recall@3 | 0.5058 | | cosine_recall@5 | 0.5734 | | cosine_recall@10 | 0.655 | | cosine_ndcg@10 | 0.4805 | | cosine_mrr@10 | 0.4252 | | **cosine_map@100** | **0.4342** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 30 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 30 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:-----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.6639 | 10 | 5.6138 | - | - | - | - | - | | 0.9959 | 15 | - | 0.3594 | 0.3735 | 0.3723 | 0.3161 | 0.3807 | | 1.3278 | 20 | 4.9173 | - | - | - | - | - | | 1.9917 | 30 | 3.7581 | 0.3874 | 0.4014 | 0.4026 | 0.3729 | 0.4032 | | 2.6556 | 40 | 3.0018 | - | - | - | - | - | | 2.9876 | 45 | - | 0.4031 | 0.4200 | 0.4212 | 0.3858 | 0.4223 | | 3.3195 | 50 | 2.5035 | - | - | - | - | - | | 3.9834 | 60 | 1.9031 | 0.4187 | 0.4303 | 0.4178 | 0.3958 | 0.4291 | | 4.6473 | 70 | 1.474 | - | - | - | - | - | | 4.9793 | 75 | - | 0.4293 | 0.4332 | 0.4318 | 0.4172 | 0.4401 | | 5.3112 | 80 | 1.2801 | - | - | - | - | - | | 5.9751 | 90 | 0.9577 | 0.4397 | 0.4382 | 0.4444 | 0.4275 | 0.4518 | | 6.6390 | 100 | 0.7539 | - | - | - | - | - | | 6.9710 | 105 | - | 0.4434 | 0.4414 | 0.4496 | 0.4262 | 0.4466 | | 7.3029 | 110 | 0.694 | - | - | - | - | - | | 7.9668 | 120 | 0.5147 | 0.4423 | 0.4488 | 0.4507 | 0.4358 | 0.4495 | | 8.6307 | 130 | 0.4589 | - | - | - | - | - | | 8.9627 | 135 | - | 0.4488 | 0.4575 | 0.4544 | 0.4407 | 0.4493 | | 9.2946 | 140 | 0.3843 | - | - | - | - | - | | 9.9585 | 150 | 0.3506 | 0.4521 | 0.4465 | 0.4559 | 0.4420 | 0.4485 | | 10.6224 | 160 | 0.2723 | - | - | - | - | - | | 10.9544 | 165 | - | 0.4497 | 0.4435 | 0.4499 | 0.4304 | 0.4453 | | 11.2863 | 170 | 0.2555 | - | - | - | - | - | | 11.9502 | 180 | 0.2077 | 0.4448 | 0.4472 | 0.4468 | 0.4287 | 0.4453 | | 12.6141 | 190 | 0.1894 | - | - | - | - | - | | **12.9461** | **195** | **-** | **0.4516** | **0.4463** | **0.4566** | **0.4336** | **0.452** | | 13.2780 | 200 | 0.1725 | - | - | - | - | - | | 13.9419 | 210 | 0.1395 | 0.4528 | 0.4520 | 0.4561 | 0.4333 | 0.4534 | | 14.6058 | 220 | 0.155 | - | - | - | - | - | | 14.9378 | 225 | - | 0.4461 | 0.4491 | 0.4527 | 0.4369 | 0.4517 | | 15.2697 | 230 | 0.132 | - | - | - | - | - | | 15.9336 | 240 | 0.1148 | - | - | - | - | - | | 16.0 | 241 | - | 0.4482 | 0.4537 | 0.4540 | 0.4303 | 0.4538 | | 16.5975 | 250 | 0.1061 | - | - | - | - | - | | 16.9959 | 256 | - | 0.4464 | 0.4538 | 0.4551 | 0.4294 | 0.4577 | | 17.2614 | 260 | 0.0961 | - | - | - | - | - | | 17.9253 | 270 | 0.087 | - | - | - | - | - | | 17.9917 | 271 | - | 0.4485 | 0.4483 | 0.4495 | 0.4326 | 0.4568 | | 18.5892 | 280 | 0.1009 | - | - | - | - | - | | 18.9876 | 286 | - | 0.4483 | 0.4517 | 0.4545 | 0.4396 | 0.4565 | | 19.2531 | 290 | 0.0854 | - | - | - | - | - | | 19.9170 | 300 | 0.073 | - | - | - | - | - | | 19.9834 | 301 | - | 0.4473 | 0.4502 | 0.4521 | 0.4349 | 0.4548 | | 20.5809 | 310 | 0.0726 | - | - | - | - | - | | 20.9793 | 316 | - | 0.4466 | 0.4525 | 0.4538 | 0.4341 | 0.4583 | | 21.2448 | 320 | 0.0747 | - | - | - | - | - | | 21.9087 | 330 | 0.0621 | - | - | - | - | - | | 21.9751 | 331 | - | 0.4441 | 0.4537 | 0.4534 | 0.4388 | 0.4564 | | 22.5726 | 340 | 0.0682 | - | - | - | - | - | | 22.9710 | 346 | - | 0.4454 | 0.4529 | 0.4544 | 0.4385 | 0.4589 | | 23.2365 | 350 | 0.0612 | - | - | - | - | - | | 23.9004 | 360 | 0.0546 | - | - | - | - | - | | 23.9668 | 361 | - | 0.4464 | 0.4494 | 0.4551 | 0.4381 | 0.4567 | | 24.5643 | 370 | 0.0599 | - | - | - | - | - | | 24.9627 | 376 | - | 0.4465 | 0.4506 | 0.4553 | 0.4363 | 0.4567 | | 25.2282 | 380 | 0.0591 | - | - | - | - | - | | 25.8921 | 390 | 0.0562 | - | - | - | - | - | | 25.9585 | 391 | - | 0.4454 | 0.4515 | 0.4532 | 0.4343 | 0.4575 | | 26.5560 | 400 | 0.0623 | - | - | - | - | - | | 26.9544 | 406 | - | 0.4452 | 0.4531 | 0.4544 | 0.4342 | 0.4573 | | 27.2199 | 410 | 0.061 | - | - | - | - | - | | 27.8838 | 420 | 0.053 | - | - | - | - | - | | 27.9502 | 421 | - | 0.4454 | 0.4514 | 0.4533 | 0.4330 | 0.4573 | | 28.5477 | 430 | 0.0564 | - | - | - | - | - | | 28.9461 | 436 | - | 0.4465 | 0.4516 | 0.4533 | 0.4338 | 0.4562 | | 29.2116 | 440 | 0.056 | - | - | - | - | - | | 29.8755 | 450 | 0.0586 | 0.4465 | 0.4518 | 0.4521 | 0.4342 | 0.4573 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```