File size: 24,737 Bytes
e011522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
---
base_model: microsoft/mpnet-base
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
  sentences:
  - A young male is looking at a newspaper while 2 females walks past him.
  - The bed is dirty.
  - The man is on the moon.
- source_sentence: A carefully balanced male stands on one foot near a clean ocean
    beach area.
  sentences:
  - A man is ouside near the beach.
  - Three policemen patrol the streets on bikes
  - A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
  sentences:
  - Near the trashcan the man stood and smoked
  - A man in a blue shirt leans on a wall beside a road with a blue van and red car
    with water in the background.
  - A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
  sentences:
  - Two girls riding on an amusement part ride.
  - a guy laughs while doing laundry
  - Three girls are standing together in a room, one is listening, one is writing
    on a wall and the third is talking to them.
- source_sentence: A construction worker peeking out of a manhole while his coworker
    sits on the sidewalk smiling.
  sentences:
  - A worker is looking out of a manhole.
  - A man is giving a presentation.
  - The workers are both inside the manhole.
model-index:
- name: MPNet base trained on AllNLI triplets
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: all nli dev
      type: all-nli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.9141859052247874
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.08444714459295262
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.9097812879708383
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.9097812879708383
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.9141859052247874
      name: Max Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: all nli test
      type: all-nli-test
    metrics:
    - type: cosine_accuracy
      value: 0.926463912846119
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.07353608715388107
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.9187471629596006
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.9179906188530791
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.926463912846119
      name: Max Accuracy
---

# MPNet base trained on AllNLI triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("chanbistec/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
    'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
    'A worker is looking out of a manhole.',
    'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9142     |
| dot_accuracy       | 0.0844     |
| manhattan_accuracy | 0.9098     |
| euclidean_accuracy | 0.9098     |
| **max_accuracy**   | **0.9142** |

#### Triplet
* Dataset: `all-nli-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9265     |
| dot_accuracy       | 0.0735     |
| manhattan_accuracy | 0.9187     |
| euclidean_accuracy | 0.918      |
| **max_accuracy**   | **0.9265** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### all-nli

* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                           |
  | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | anchor                                                                     | positive                                         | negative                                                   |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### all-nli

* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                         | positive                                                    | negative                                                |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>       |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>        |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | loss   | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
| 0     | 0    | -             | -      | 0.6832                   | -                         |
| 0.016 | 100  | 3.0282        | 1.5782 | 0.7752                   | -                         |
| 0.032 | 200  | 1.2529        | 0.9154 | 0.7991                   | -                         |
| 0.048 | 300  | 1.4472        | 0.7901 | 0.8103                   | -                         |
| 0.064 | 400  | 0.9059        | 0.7468 | 0.8114                   | -                         |
| 0.08  | 500  | 0.8663        | 0.8423 | 0.7981                   | -                         |
| 0.096 | 600  | 1.0836        | 0.8995 | 0.8010                   | -                         |
| 0.112 | 700  | 0.9315        | 0.8971 | 0.8100                   | -                         |
| 0.128 | 800  | 1.1273        | 0.9654 | 0.8012                   | -                         |
| 0.144 | 900  | 1.1194        | 0.9318 | 0.8303                   | -                         |
| 0.16  | 1000 | 1.0911        | 0.9048 | 0.8038                   | -                         |
| 0.176 | 1100 | 1.1332        | 0.9340 | 0.8039                   | -                         |
| 0.192 | 1200 | 1.0154        | 0.9041 | 0.8076                   | -                         |
| 0.208 | 1300 | 0.7995        | 0.9301 | 0.7959                   | -                         |
| 0.224 | 1400 | 0.7614        | 0.8275 | 0.8071                   | -                         |
| 0.24  | 1500 | 0.8724        | 0.7973 | 0.8173                   | -                         |
| 0.256 | 1600 | 0.6751        | 0.7916 | 0.8197                   | -                         |
| 0.272 | 1700 | 0.8933        | 0.8572 | 0.8194                   | -                         |
| 0.288 | 1800 | 0.8585        | 0.8560 | 0.8056                   | -                         |
| 0.304 | 1900 | 0.8354        | 0.7987 | 0.8123                   | -                         |
| 0.32  | 2000 | 0.7484        | 0.7559 | 0.8348                   | -                         |
| 0.336 | 2100 | 0.6047        | 0.7532 | 0.8471                   | -                         |
| 0.352 | 2200 | 0.6221        | 0.6956 | 0.8665                   | -                         |
| 0.368 | 2300 | 0.8332        | 0.7214 | 0.8542                   | -                         |
| 0.384 | 2400 | 0.7755        | 0.7007 | 0.8481                   | -                         |
| 0.4   | 2500 | 0.6912        | 0.7505 | 0.8499                   | -                         |
| 0.416 | 2600 | 0.6169        | 0.6536 | 0.8591                   | -                         |
| 0.432 | 2700 | 0.8907        | 0.7240 | 0.8560                   | -                         |
| 0.448 | 2800 | 0.8576        | 0.6790 | 0.8499                   | -                         |
| 0.464 | 2900 | 0.8057        | 0.6870 | 0.8575                   | -                         |
| 0.48  | 3000 | 0.6928        | 0.6540 | 0.8641                   | -                         |
| 0.496 | 3100 | 0.7566        | 0.6419 | 0.8682                   | -                         |
| 0.512 | 3200 | 0.5757        | 0.6109 | 0.8783                   | -                         |
| 0.528 | 3300 | 0.601         | 0.5481 | 0.8914                   | -                         |
| 0.544 | 3400 | 0.5105        | 0.5853 | 0.8820                   | -                         |
| 0.56  | 3500 | 0.5116        | 0.5918 | 0.8961                   | -                         |
| 0.576 | 3600 | 0.495         | 0.5546 | 0.8897                   | -                         |
| 0.592 | 3700 | 0.5585        | 0.5457 | 0.8970                   | -                         |
| 0.608 | 3800 | 0.4778        | 0.5056 | 0.9020                   | -                         |
| 0.624 | 3900 | 0.5116        | 0.5203 | 0.9019                   | -                         |
| 0.64  | 4000 | 0.753         | 0.5490 | 0.9019                   | -                         |
| 0.656 | 4100 | 0.9207        | 0.5447 | 0.9049                   | -                         |
| 0.672 | 4200 | 0.8695        | 0.4996 | 0.9055                   | -                         |
| 0.688 | 4300 | 0.6867        | 0.4825 | 0.9107                   | -                         |
| 0.704 | 4400 | 0.5961        | 0.4670 | 0.9166                   | -                         |
| 0.72  | 4500 | 0.5547        | 0.4748 | 0.9104                   | -                         |
| 0.736 | 4600 | 0.6145        | 0.4636 | 0.9145                   | -                         |
| 0.752 | 4700 | 0.6643        | 0.4806 | 0.9128                   | -                         |
| 0.768 | 4800 | 0.6134        | 0.4521 | 0.9110                   | -                         |
| 0.784 | 4900 | 0.5847        | 0.4627 | 0.9080                   | -                         |
| 0.8   | 5000 | 0.6482        | 0.4853 | 0.9107                   | -                         |
| 0.816 | 5100 | 0.5103        | 0.4374 | 0.9104                   | -                         |
| 0.832 | 5200 | 0.5639        | 0.4306 | 0.9089                   | -                         |
| 0.848 | 5300 | 0.5247        | 0.4418 | 0.9116                   | -                         |
| 0.864 | 5400 | 0.6094        | 0.4564 | 0.9101                   | -                         |
| 0.88  | 5500 | 0.5296        | 0.4394 | 0.9092                   | -                         |
| 0.896 | 5600 | 0.5469        | 0.4316 | 0.9101                   | -                         |
| 0.912 | 5700 | 0.6061        | 0.4258 | 0.9124                   | -                         |
| 0.928 | 5800 | 0.5456        | 0.4167 | 0.9113                   | -                         |
| 0.944 | 5900 | 0.6776        | 0.4168 | 0.9108                   | -                         |
| 0.96  | 6000 | 0.7401        | 0.4267 | 0.9139                   | -                         |
| 0.976 | 6100 | 0.6568        | 0.4227 | 0.9140                   | -                         |
| 0.992 | 6200 | 0.0002        | 0.4224 | 0.9142                   | -                         |
| 1.0   | 6250 | -             | -      | -                        | 0.9265                    |


### Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->