File size: 1,687 Bytes
3bc25b7
 
 
 
 
1d885d8
 
3bc25b7
 
 
 
 
 
1d885d8
 
 
b0cecf8
3bc25b7
 
 
 
 
 
 
 
1d885d8
b0cecf8
 
 
 
 
 
3bc25b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cecf8
 
 
3bc25b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- rouge
model_index:
- name: bart-base-finetuned-xsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    metric:
      name: Rouge1
      type: rouge
      value: 27.887
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-xsum

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5925
- Rouge1: 27.887
- Rouge2: 16.1414
- Rougel: 24.0525
- Rougelsum: 25.4029
- Gen Len: 19.9841

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:|
| 1.9826        | 1.0   | 879  | 1.5925          | 27.887 | 16.1414 | 24.0525 | 25.4029   | 19.9841 |


### Framework versions

- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3