---
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- object-detection
- pytorch
library_name: ultralytics
library_version: 8.0.239
inference: false
datasets:
- chanelcolgate/yenthienviet
model-index:
- name: chanelcolgate/chamdiemgianhang-vsk-v3
results:
- task:
type: object-detection
dataset:
type: chanelcolgate/yenthienviet
name: yenthienviet
split: validation
metrics:
- type: precision # since mAP@0.5 is not available on hf.co/metrics
value: 0.77655 # min: 0.0 - max: 1.0
name: mAP@0.5(box)
---
### Supported Labels
```
['BOM_GEN', 'BOM_JUN', 'BOM_KID', 'BOM_SAC', 'BOM_VTG', 'BOM_YTV', 'HOP_FEJ', 'HOP_FRE', 'HOP_JUN', 'HOP_POC', 'HOP_VTG', 'HOP_YTV', 'LOC_JUN', 'LOC_KID', 'LOC_YTV', 'LOO_DAU', 'LOO_KID', 'LOO_MAM', 'LOO_YTV', 'POS_LON', 'POS_NHO', 'POS_THA', 'TUI_GEN', 'TUI_JUN', 'TUI_KID', 'TUI_SAC', 'TUI_THV', 'TUI_THX', 'TUI_VTG', 'TUI_YTV']
```
### How to use
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
```bash
pip install ultralyticsplus==0.1.0 ultralytics==8.0.239
```
- Load model and perform prediction:
```python
from ultralyticsplus import YOLO, render_result
# load model
model = YOLO('chanelcolgate/chamdiemgianhang-vsk-v3')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()
```