--- datasets: - chargoddard/Open-Platypus-Chat language: - en tags: - llama --- Experimental ReLoRA-trained model using the OpenPlatypus dataset. Ran for one epoch, with three lora restarts. Not recommended for use yet. Mostly tossing this up for testing. Base model was [llama2-22b-blocktriangular](https://huggingface.co/chargoddard/llama2-22b-blocktriangular). Relevant training parameters: ``` adapter: qlora load_in_4bit: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.001 lora_target_linear: true relora_steps: 150 relora_warmup_steps: 10 gradient_accumulation_steps: 2 micro_batch_size: 3 ``` Uses the same prompt format as [Ypotryll-22b](https://huggingface.co/chargoddard/ypotryll-22b-epoch2-qlora). Prefix messages with `" ***System:"`, `" ***Query:"`, or `" ***Response:"`, paying attention to whitespace. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__platypus-2-22b-relora) | Metric | Value | |-----------------------|---------------------------| | Avg. | 52.21 | | ARC (25-shot) | 57.68 | | HellaSwag (10-shot) | 82.44 | | MMLU (5-shot) | 55.33 | | TruthfulQA (0-shot) | 43.61 | | Winogrande (5-shot) | 77.35 | | GSM8K (5-shot) | 6.6 | | DROP (3-shot) | 42.46 |