charmquark
commited on
Commit
•
f2dc580
1
Parent(s):
b17f993
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1870.97 +/- 16.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8642ed9381c0fbf2a316645b111a1af5f144c9337f4473f91f34e6be792345e7
|
3 |
+
size 129261
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8be8653e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8be8653ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8be8653f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8be8658040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8be86580d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8be8658160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8be86581f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8be8658280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8be8658310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8be86583a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8be8658430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8be86584c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8be8651d40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679448113023184654,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJEM3T67hCa/VMmXvqmnqD4f2pk+yvIfPwh/FjzRVGy/LIs8P09NSz+99E0/+D8+vig88z7F3fE+h8YCP7puoDytyC0/8KetvhtMz75T6dY9/28OP+3bnD9xhwE/3BUsvj65OD9mOpE+bnQjP4SJRb/ifM49oywav1XuX751CMa+/LdJPrRPXr+G4/89AJPLPp2Etb/ivFk8IembvfRC2j/k3Fc9o1hBP0b9vb5z+ig/Mta1PwVkxz7xwWa/nUBUv+twrz+6p/K+7kFPP0tRHD+sY7G/l6FhwG50Iz/44aU//utWPVVpEL+iISS+Kha3PIvo/L7lPSe+1/1IvnSIDT/9wqG/swteP+pvpb7vniJAElbcv78LfD9DNBq+BdGwPzP9zj83Dvq+Sjq2v4+VNL8DrqM/Udmvvxj0KD9D8AU9rGOxv2Y6kT5udCM/+OGlPx7eg77+goU7XgX4Pp4/Yz/FJzK/7rhVP0ktfTzTOxC/gDkSv53apT+h3TA/Eu7qPqVih79edqY/I/sKP1YPuT97ibw/Q+4nv+5uu76DEEW/TiB7P3/DAMA7Qjc/R4ukPT65OD9mOpE+bnQjP4SJRb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACh1nM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgDmfPQAAAABL/v+/AAAAAMT+xr0AAAAAb5LpPwAAAADU06g9AAAAAMEm3j8AAAAA7E0KvgAAAAC9qOK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmzweNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN+5D74AAAAA/8vvvwAAAACBMw49AAAAAAww2T8AAAAAW3DfPQAAAADqw+M/AAAAANK6+r0AAAAAf5LzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFp6NTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDPY5C9AAAAADe/778AAAAAmNG0vQAAAADoDOk/AAAAANqMcTsAAAAAqRTePwAAAACKbgi+AAAAAGap7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnyy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmWkSPgAAAACXivW/AAAAADa4sL0AAAAAqnjxPwAAAAD3hZk9AAAAAFS87T8AAAAAkYUTvQAAAAB2DPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4H3Z5AyEeMAWyUTegDjAF0lEdArVYGizsyBXV9lChoBkdAn4gn1BdD6WgHTegDaAhHQK1WKfDk2gp1fZQoaAZHQJ/TGxIJ7cBoB03oA2gIR0CtWFbUG3WndX2UKGgGR0Cgl5K+8Gs4aAdN6ANoCEdArWDaKNyYHHV9lChoBkdAoGMnkcS5AmgHTegDaAhHQK1jdc1O0sx1fZQoaAZHQKChaC/47BBoB03oA2gIR0CtY5rHuJDWdX2UKGgGR0CgqT5NGmUGaAdN6ANoCEdArWXaynk1dnV9lChoBkdAoMHGIVM232gHTegDaAhHQK1yRGax5cF1fZQoaAZHQJ/xE8lolD5oB03oA2gIR0CtdO6ySmqHdX2UKGgGR0CdcLjHGS6laAdN6ANoCEdArXUSJ9AoonV9lChoBkdAnUhg4Otnw2gHTegDaAhHQK13Qmnfl6t1fZQoaAZHQJxa19roGINoB03oA2gIR0Ctf52kSElFdX2UKGgGR0CdqLZ2ZApsaAdN6ANoCEdArYJOzyBkJHV9lChoBkdAmxSk9lmOEWgHTegDaAhHQK2Cc87IT5B1fZQoaAZHQJtnv9l2/ztoB03oA2gIR0CthKJgssg/dX2UKGgGR0CeJt+az/p/aAdN6ANoCEdArZDgIppeu3V9lChoBkdAoKA4nQY1pGgHTegDaAhHQK2TfJul41R1fZQoaAZHQJ+Fe7+T/yZoB03oA2gIR0Ctk58S5AhTdX2UKGgGR0Cc8MlCTlkpaAdN6ANoCEdArZXdfw7T2HV9lChoBkdAngavkeZG8WgHTegDaAhHQK2e02mYSg51fZQoaAZHQJ9rZ4RmK65oB03oA2gIR0CtoX2IO6NEdX2UKGgGR0CcW6krPMSsaAdN6ANoCEdAraGihxo7FXV9lChoBkdAmHr3uAqd6WgHTegDaAhHQK2j3B0IToN1fZQoaAZHQKBmHspG4I9oB03oA2gIR0CtsCMoMKCydX2UKGgGR0CgMRPzOHFhaAdN6ANoCEdArbLYCIUJwHV9lChoBkdAn97Oo1k1/GgHTegDaAhHQK2y+qYJE6V1fZQoaAZHQKC1KVHFxXJoB03oA2gIR0CttUyyMUAUdX2UKGgGR0CgmAZntfG/aAdN6ANoCEdArb3gGKQ7tHV9lChoBkdAn9itDx9XtGgHTegDaAhHQK3AcEh7mdR1fZQoaAZHQJ0jPjFQ2uRoB03oA2gIR0CtwJV1wHZ9dX2UKGgGR0Cf9NMI/qxDaAdN6ANoCEdArcLaFAVwgnV9lChoBkdAoFnf20zCUGgHTegDaAhHQK3PEVVxS511fZQoaAZHQKCA7vF3pwFoB03oA2gIR0Ct0j9RrJr+dX2UKGgGR0CghUzTfBN3aAdN6ANoCEdArdJh1RtP6HV9lChoBkdAnqhkf9xZMmgHTegDaAhHQK3UjpyIYWN1fZQoaAZHQKA1oZeiSJVoB03oA2gIR0Ct3YxZlnRLdX2UKGgGR0CfZwqVQhwEaAdN6ANoCEdAreAe9alk6XV9lChoBkdAoFUH5JsfrGgHTegDaAhHQK3gQ64lQdl1fZQoaAZHQJ60rgvUSZloB03oA2gIR0Ct4pVqesgddX2UKGgGR0CgHrhSUC7saAdN6ANoCEdAre7oRAbADnV9lChoBkdAoN0qgTRIBmgHTegDaAhHQK3yGukk8ih1fZQoaAZHQKEAG0ojOcFoB03oA2gIR0Ct8j2rfcesdX2UKGgGR0CgP7lZowmFaAdN6ANoCEdArfSDHlwLmnV9lChoBkdAoGnDBZZB9mgHTegDaAhHQK39iR5kbxV1fZQoaAZHQJ/Db4wh4dJoB03oA2gIR0CuAGIicG1QdX2UKGgGR0CgD9cv24/eaAdN6ANoCEdArgCE+xGDtnV9lChoBkdAnu5o/qxC6mgHTegDaAhHQK4C41WKdhB1fZQoaAZHQJ7etKPGQ0ZoB03oA2gIR0CuEBkFOfukdX2UKGgGR0CfwU+OOsDGaAdN6ANoCEdArhMCe2/i53V9lChoBkdAn0eSblRxcWgHTegDaAhHQK4TJ49ovi91fZQoaAZHQJ/+7blA/s5oB03oA2gIR0CuFZA1WKdhdX2UKGgGR0Cf8LrrPdEcaAdN6ANoCEdArh603++/QHV9lChoBkdAn45JDzAerGgHTegDaAhHQK4hjAzpHI91fZQoaAZHQKAs8FL39JloB03oA2gIR0CuIbJyp71JdX2UKGgGR0CfPKK8L8aXaAdN6ANoCEdAriQHsmfGuXV9lChoBkdAnoh4ZuQ6qGgHTegDaAhHQK4xHuYQarF1fZQoaAZHQJ3kYizLOiZoB03oA2gIR0CuM+NQbdaddX2UKGgGR0CeINBciW3SaAdN6ANoCEdArjQIw0wai3V9lChoBkdAnx5zA8B+4WgHTegDaAhHQK42TiWE9Md1fZQoaAZHQKBsBN21Ul1oB03oA2gIR0CuPw6By0a7dX2UKGgGR0CgtPFruYx+aAdN6ANoCEdArkHHcFhXsHV9lChoBkdAoK1ALeANG2gHTegDaAhHQK5B69WZJCl1fZQoaAZHQASCHIp6QeVoB0uBaAhHQK5DuU+LWI51fZQoaAZHQKCU7QNTcZdoB03oA2gIR0CuRC4jB2wFdX2UKGgGR0Cg+2U+kgwHaAdN6ANoCEdArlDYAEMb33V9lChoBkdAoGRM/GEPD2gHTegDaAhHQK5TmpLmITJ1fZQoaAZHQJ4rAgGKQ7toB03oA2gIR0CuVYVkDp1SdX2UKGgGR0CfNHk0aZQYaAdN6ANoCEdArlX5F3IMjXV9lChoBkdAnpcBa1TisGgHTegDaAhHQK5exFuvUz91fZQoaAZHQJ1bftnf2sdoB03oA2gIR0CuYV1jI7vHdX2UKGgGR0CcQl48lolEaAdN6ANoCEdArmNHUtqYZ3V9lChoBkdAnkpXwG4ZuWgHTegDaAhHQK5jx/axoqV1fZQoaAZHQJovxoGpuMxoB03oA2gIR0CucFbxNIsidX2UKGgGR0CZpBGsFMZhaAdN6ANoCEdArnL2R/3Fk3V9lChoBkdAnXxgUpNKy2gHTegDaAhHQK504B06o2p1fZQoaAZHQJljVTho/RpoB03oA2gIR0CudU/wqiGndX2UKGgGR0CchFuDSPU8aAdN6ANoCEdArn31UIcBEXV9lChoBkdAncbRSk0rLGgHTegDaAhHQK6ApT8YQ8R1fZQoaAZHQJvsZmQKa5RoB03oA2gIR0CugpjJU5uJdX2UKGgGR0CccUaTwDvFaAdN6ANoCEdAroMRuO0b+HV9lChoBkdAnVI0+gUUPGgHTegDaAhHQK6P08wHqu91fZQoaAZHQJ1NdKoQ4CJoB03oA2gIR0Cukm7/ffoBdX2UKGgGR0CfJBtw71ZlaAdN6ANoCEdArpRIlQdjonV9lChoBkdAnXBXnMdLhGgHTegDaAhHQK6UvDsMRYl1fZQoaAZHQJ58RdQfp2VoB03oA2gIR0CunW3t0FKTdX2UKGgGR0CcPYM4cWCVaAdN6ANoCEdArqAV0knkUHV9lChoBkdAnILKL4vexmgHTegDaAhHQK6h+wL3K0V1fZQoaAZHQJwXOFQEZBNoB03oA2gIR0CuonRKQJXydX2UKGgGR0CbwCh3JPqLaAdN6ANoCEdArq6eNT987nV9lChoBkdAmnD1XvH932gHTegDaAhHQK6xbGc4HX51fZQoaAZHQJtLF5kbxVhoB03oA2gIR0CuszwGwA2idX2UKGgGR0CbjrpDNQj2aAdN6ANoCEdArrOqHCXQdHV9lChoBkdAnQHh20Re1WgHTegDaAhHQK68KYoAn2J1fZQoaAZHQJx8d5/smfJoB03oA2gIR0Cuvshd+ocadX2UKGgGR0CdxlD50r9VaAdN6ANoCEdArsCpmmLtNXV9lChoBkdAngqLz5GjK2gHTegDaAhHQK7BGm+j/Mp1fZQoaAZHQJ1S3VYp2EFoB03oA2gIR0CuzIFlkH2RdX2UKGgGR0CcXITIvJzUaAdN6ANoCEdArs/B/wy6+XV9lChoBkdAncuxun/DL2gHTegDaAhHQK7RoNH6Mzd1fZQoaAZHQJ3Ck8gZCOZoB03oA2gIR0Cu0hQmE5AAdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55beb77be76bf491eba0c902dd2822598c5dac3f5d30e1bae814c45e64b84d95
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ef57d8117bf80690cb290108d0846f6c94331c467334d017b3dd9189bbe8b9
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8be8653e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8be8653ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8be8653f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8be8658040>", "_build": "<function ActorCriticPolicy._build at 0x7f8be86580d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8be8658160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8be86581f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8be8658280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8be8658310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8be86583a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8be8658430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8be86584c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8be8651d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679448113023184654, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJEM3T67hCa/VMmXvqmnqD4f2pk+yvIfPwh/FjzRVGy/LIs8P09NSz+99E0/+D8+vig88z7F3fE+h8YCP7puoDytyC0/8KetvhtMz75T6dY9/28OP+3bnD9xhwE/3BUsvj65OD9mOpE+bnQjP4SJRb/ifM49oywav1XuX751CMa+/LdJPrRPXr+G4/89AJPLPp2Etb/ivFk8IembvfRC2j/k3Fc9o1hBP0b9vb5z+ig/Mta1PwVkxz7xwWa/nUBUv+twrz+6p/K+7kFPP0tRHD+sY7G/l6FhwG50Iz/44aU//utWPVVpEL+iISS+Kha3PIvo/L7lPSe+1/1IvnSIDT/9wqG/swteP+pvpb7vniJAElbcv78LfD9DNBq+BdGwPzP9zj83Dvq+Sjq2v4+VNL8DrqM/Udmvvxj0KD9D8AU9rGOxv2Y6kT5udCM/+OGlPx7eg77+goU7XgX4Pp4/Yz/FJzK/7rhVP0ktfTzTOxC/gDkSv53apT+h3TA/Eu7qPqVih79edqY/I/sKP1YPuT97ibw/Q+4nv+5uu76DEEW/TiB7P3/DAMA7Qjc/R4ukPT65OD9mOpE+bnQjP4SJRb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACh1nM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgDmfPQAAAABL/v+/AAAAAMT+xr0AAAAAb5LpPwAAAADU06g9AAAAAMEm3j8AAAAA7E0KvgAAAAC9qOK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmzweNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN+5D74AAAAA/8vvvwAAAACBMw49AAAAAAww2T8AAAAAW3DfPQAAAADqw+M/AAAAANK6+r0AAAAAf5LzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFp6NTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDPY5C9AAAAADe/778AAAAAmNG0vQAAAADoDOk/AAAAANqMcTsAAAAAqRTePwAAAACKbgi+AAAAAGap7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnyy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmWkSPgAAAACXivW/AAAAADa4sL0AAAAAqnjxPwAAAAD3hZk9AAAAAFS87T8AAAAAkYUTvQAAAAB2DPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4H3Z5AyEeMAWyUTegDjAF0lEdArVYGizsyBXV9lChoBkdAn4gn1BdD6WgHTegDaAhHQK1WKfDk2gp1fZQoaAZHQJ/TGxIJ7cBoB03oA2gIR0CtWFbUG3WndX2UKGgGR0Cgl5K+8Gs4aAdN6ANoCEdArWDaKNyYHHV9lChoBkdAoGMnkcS5AmgHTegDaAhHQK1jdc1O0sx1fZQoaAZHQKChaC/47BBoB03oA2gIR0CtY5rHuJDWdX2UKGgGR0CgqT5NGmUGaAdN6ANoCEdArWXaynk1dnV9lChoBkdAoMHGIVM232gHTegDaAhHQK1yRGax5cF1fZQoaAZHQJ/xE8lolD5oB03oA2gIR0CtdO6ySmqHdX2UKGgGR0CdcLjHGS6laAdN6ANoCEdArXUSJ9AoonV9lChoBkdAnUhg4Otnw2gHTegDaAhHQK13Qmnfl6t1fZQoaAZHQJxa19roGINoB03oA2gIR0Ctf52kSElFdX2UKGgGR0CdqLZ2ZApsaAdN6ANoCEdArYJOzyBkJHV9lChoBkdAmxSk9lmOEWgHTegDaAhHQK2Cc87IT5B1fZQoaAZHQJtnv9l2/ztoB03oA2gIR0CthKJgssg/dX2UKGgGR0CeJt+az/p/aAdN6ANoCEdArZDgIppeu3V9lChoBkdAoKA4nQY1pGgHTegDaAhHQK2TfJul41R1fZQoaAZHQJ+Fe7+T/yZoB03oA2gIR0Ctk58S5AhTdX2UKGgGR0Cc8MlCTlkpaAdN6ANoCEdArZXdfw7T2HV9lChoBkdAngavkeZG8WgHTegDaAhHQK2e02mYSg51fZQoaAZHQJ9rZ4RmK65oB03oA2gIR0CtoX2IO6NEdX2UKGgGR0CcW6krPMSsaAdN6ANoCEdAraGihxo7FXV9lChoBkdAmHr3uAqd6WgHTegDaAhHQK2j3B0IToN1fZQoaAZHQKBmHspG4I9oB03oA2gIR0CtsCMoMKCydX2UKGgGR0CgMRPzOHFhaAdN6ANoCEdArbLYCIUJwHV9lChoBkdAn97Oo1k1/GgHTegDaAhHQK2y+qYJE6V1fZQoaAZHQKC1KVHFxXJoB03oA2gIR0CttUyyMUAUdX2UKGgGR0CgmAZntfG/aAdN6ANoCEdArb3gGKQ7tHV9lChoBkdAn9itDx9XtGgHTegDaAhHQK3AcEh7mdR1fZQoaAZHQJ0jPjFQ2uRoB03oA2gIR0CtwJV1wHZ9dX2UKGgGR0Cf9NMI/qxDaAdN6ANoCEdArcLaFAVwgnV9lChoBkdAoFnf20zCUGgHTegDaAhHQK3PEVVxS511fZQoaAZHQKCA7vF3pwFoB03oA2gIR0Ct0j9RrJr+dX2UKGgGR0CghUzTfBN3aAdN6ANoCEdArdJh1RtP6HV9lChoBkdAnqhkf9xZMmgHTegDaAhHQK3UjpyIYWN1fZQoaAZHQKA1oZeiSJVoB03oA2gIR0Ct3YxZlnRLdX2UKGgGR0CfZwqVQhwEaAdN6ANoCEdAreAe9alk6XV9lChoBkdAoFUH5JsfrGgHTegDaAhHQK3gQ64lQdl1fZQoaAZHQJ60rgvUSZloB03oA2gIR0Ct4pVqesgddX2UKGgGR0CgHrhSUC7saAdN6ANoCEdAre7oRAbADnV9lChoBkdAoN0qgTRIBmgHTegDaAhHQK3yGukk8ih1fZQoaAZHQKEAG0ojOcFoB03oA2gIR0Ct8j2rfcesdX2UKGgGR0CgP7lZowmFaAdN6ANoCEdArfSDHlwLmnV9lChoBkdAoGnDBZZB9mgHTegDaAhHQK39iR5kbxV1fZQoaAZHQJ/Db4wh4dJoB03oA2gIR0CuAGIicG1QdX2UKGgGR0CgD9cv24/eaAdN6ANoCEdArgCE+xGDtnV9lChoBkdAnu5o/qxC6mgHTegDaAhHQK4C41WKdhB1fZQoaAZHQJ7etKPGQ0ZoB03oA2gIR0CuEBkFOfukdX2UKGgGR0CfwU+OOsDGaAdN6ANoCEdArhMCe2/i53V9lChoBkdAn0eSblRxcWgHTegDaAhHQK4TJ49ovi91fZQoaAZHQJ/+7blA/s5oB03oA2gIR0CuFZA1WKdhdX2UKGgGR0Cf8LrrPdEcaAdN6ANoCEdArh603++/QHV9lChoBkdAn45JDzAerGgHTegDaAhHQK4hjAzpHI91fZQoaAZHQKAs8FL39JloB03oA2gIR0CuIbJyp71JdX2UKGgGR0CfPKK8L8aXaAdN6ANoCEdAriQHsmfGuXV9lChoBkdAnoh4ZuQ6qGgHTegDaAhHQK4xHuYQarF1fZQoaAZHQJ3kYizLOiZoB03oA2gIR0CuM+NQbdaddX2UKGgGR0CeINBciW3SaAdN6ANoCEdArjQIw0wai3V9lChoBkdAnx5zA8B+4WgHTegDaAhHQK42TiWE9Md1fZQoaAZHQKBsBN21Ul1oB03oA2gIR0CuPw6By0a7dX2UKGgGR0CgtPFruYx+aAdN6ANoCEdArkHHcFhXsHV9lChoBkdAoK1ALeANG2gHTegDaAhHQK5B69WZJCl1fZQoaAZHQASCHIp6QeVoB0uBaAhHQK5DuU+LWI51fZQoaAZHQKCU7QNTcZdoB03oA2gIR0CuRC4jB2wFdX2UKGgGR0Cg+2U+kgwHaAdN6ANoCEdArlDYAEMb33V9lChoBkdAoGRM/GEPD2gHTegDaAhHQK5TmpLmITJ1fZQoaAZHQJ4rAgGKQ7toB03oA2gIR0CuVYVkDp1SdX2UKGgGR0CfNHk0aZQYaAdN6ANoCEdArlX5F3IMjXV9lChoBkdAnpcBa1TisGgHTegDaAhHQK5exFuvUz91fZQoaAZHQJ1bftnf2sdoB03oA2gIR0CuYV1jI7vHdX2UKGgGR0CcQl48lolEaAdN6ANoCEdArmNHUtqYZ3V9lChoBkdAnkpXwG4ZuWgHTegDaAhHQK5jx/axoqV1fZQoaAZHQJovxoGpuMxoB03oA2gIR0CucFbxNIsidX2UKGgGR0CZpBGsFMZhaAdN6ANoCEdArnL2R/3Fk3V9lChoBkdAnXxgUpNKy2gHTegDaAhHQK504B06o2p1fZQoaAZHQJljVTho/RpoB03oA2gIR0CudU/wqiGndX2UKGgGR0CchFuDSPU8aAdN6ANoCEdArn31UIcBEXV9lChoBkdAncbRSk0rLGgHTegDaAhHQK6ApT8YQ8R1fZQoaAZHQJvsZmQKa5RoB03oA2gIR0CugpjJU5uJdX2UKGgGR0CccUaTwDvFaAdN6ANoCEdAroMRuO0b+HV9lChoBkdAnVI0+gUUPGgHTegDaAhHQK6P08wHqu91fZQoaAZHQJ1NdKoQ4CJoB03oA2gIR0Cukm7/ffoBdX2UKGgGR0CfJBtw71ZlaAdN6ANoCEdArpRIlQdjonV9lChoBkdAnXBXnMdLhGgHTegDaAhHQK6UvDsMRYl1fZQoaAZHQJ58RdQfp2VoB03oA2gIR0CunW3t0FKTdX2UKGgGR0CcPYM4cWCVaAdN6ANoCEdArqAV0knkUHV9lChoBkdAnILKL4vexmgHTegDaAhHQK6h+wL3K0V1fZQoaAZHQJwXOFQEZBNoB03oA2gIR0CuonRKQJXydX2UKGgGR0CbwCh3JPqLaAdN6ANoCEdArq6eNT987nV9lChoBkdAmnD1XvH932gHTegDaAhHQK6xbGc4HX51fZQoaAZHQJtLF5kbxVhoB03oA2gIR0CuszwGwA2idX2UKGgGR0CbjrpDNQj2aAdN6ANoCEdArrOqHCXQdHV9lChoBkdAnQHh20Re1WgHTegDaAhHQK68KYoAn2J1fZQoaAZHQJx8d5/smfJoB03oA2gIR0Cuvshd+ocadX2UKGgGR0CdxlD50r9VaAdN6ANoCEdArsCpmmLtNXV9lChoBkdAngqLz5GjK2gHTegDaAhHQK7BGm+j/Mp1fZQoaAZHQJ1S3VYp2EFoB03oA2gIR0CuzIFlkH2RdX2UKGgGR0CcXITIvJzUaAdN6ANoCEdArs/B/wy6+XV9lChoBkdAncuxun/DL2gHTegDaAhHQK7RoNH6Mzd1fZQoaAZHQJ3Ck8gZCOZoB03oA2gIR0Cu0hQmE5AAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14af8881eabfa672100a34cad55d555e91d9c25ac0556973dc8911eceb1ad98a
|
3 |
+
size 1235237
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1870.9732377758714, "std_reward": 16.886414811006148, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T02:35:34.013319"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72c1a71362515afcc19926a2ea857866f495a7dfe31d3f5e3d76b05706078c97
|
3 |
+
size 2136
|