charmquark commited on
Commit
f2dc580
1 Parent(s): b17f993

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1870.97 +/- 16.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8642ed9381c0fbf2a316645b111a1af5f144c9337f4473f91f34e6be792345e7
3
+ size 129261
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8be8653e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8be8653ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8be8653f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8be8658040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8be86580d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8be8658160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8be86581f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8be8658280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8be8658310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8be86583a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8be8658430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8be86584c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8be8651d40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679448113023184654,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJEM3T67hCa/VMmXvqmnqD4f2pk+yvIfPwh/FjzRVGy/LIs8P09NSz+99E0/+D8+vig88z7F3fE+h8YCP7puoDytyC0/8KetvhtMz75T6dY9/28OP+3bnD9xhwE/3BUsvj65OD9mOpE+bnQjP4SJRb/ifM49oywav1XuX751CMa+/LdJPrRPXr+G4/89AJPLPp2Etb/ivFk8IembvfRC2j/k3Fc9o1hBP0b9vb5z+ig/Mta1PwVkxz7xwWa/nUBUv+twrz+6p/K+7kFPP0tRHD+sY7G/l6FhwG50Iz/44aU//utWPVVpEL+iISS+Kha3PIvo/L7lPSe+1/1IvnSIDT/9wqG/swteP+pvpb7vniJAElbcv78LfD9DNBq+BdGwPzP9zj83Dvq+Sjq2v4+VNL8DrqM/Udmvvxj0KD9D8AU9rGOxv2Y6kT5udCM/+OGlPx7eg77+goU7XgX4Pp4/Yz/FJzK/7rhVP0ktfTzTOxC/gDkSv53apT+h3TA/Eu7qPqVih79edqY/I/sKP1YPuT97ibw/Q+4nv+5uu76DEEW/TiB7P3/DAMA7Qjc/R4ukPT65OD9mOpE+bnQjP4SJRb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACh1nM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgDmfPQAAAABL/v+/AAAAAMT+xr0AAAAAb5LpPwAAAADU06g9AAAAAMEm3j8AAAAA7E0KvgAAAAC9qOK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmzweNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN+5D74AAAAA/8vvvwAAAACBMw49AAAAAAww2T8AAAAAW3DfPQAAAADqw+M/AAAAANK6+r0AAAAAf5LzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFp6NTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDPY5C9AAAAADe/778AAAAAmNG0vQAAAADoDOk/AAAAANqMcTsAAAAAqRTePwAAAACKbgi+AAAAAGap7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnyy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmWkSPgAAAACXivW/AAAAADa4sL0AAAAAqnjxPwAAAAD3hZk9AAAAAFS87T8AAAAAkYUTvQAAAAB2DPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4H3Z5AyEeMAWyUTegDjAF0lEdArVYGizsyBXV9lChoBkdAn4gn1BdD6WgHTegDaAhHQK1WKfDk2gp1fZQoaAZHQJ/TGxIJ7cBoB03oA2gIR0CtWFbUG3WndX2UKGgGR0Cgl5K+8Gs4aAdN6ANoCEdArWDaKNyYHHV9lChoBkdAoGMnkcS5AmgHTegDaAhHQK1jdc1O0sx1fZQoaAZHQKChaC/47BBoB03oA2gIR0CtY5rHuJDWdX2UKGgGR0CgqT5NGmUGaAdN6ANoCEdArWXaynk1dnV9lChoBkdAoMHGIVM232gHTegDaAhHQK1yRGax5cF1fZQoaAZHQJ/xE8lolD5oB03oA2gIR0CtdO6ySmqHdX2UKGgGR0CdcLjHGS6laAdN6ANoCEdArXUSJ9AoonV9lChoBkdAnUhg4Otnw2gHTegDaAhHQK13Qmnfl6t1fZQoaAZHQJxa19roGINoB03oA2gIR0Ctf52kSElFdX2UKGgGR0CdqLZ2ZApsaAdN6ANoCEdArYJOzyBkJHV9lChoBkdAmxSk9lmOEWgHTegDaAhHQK2Cc87IT5B1fZQoaAZHQJtnv9l2/ztoB03oA2gIR0CthKJgssg/dX2UKGgGR0CeJt+az/p/aAdN6ANoCEdArZDgIppeu3V9lChoBkdAoKA4nQY1pGgHTegDaAhHQK2TfJul41R1fZQoaAZHQJ+Fe7+T/yZoB03oA2gIR0Ctk58S5AhTdX2UKGgGR0Cc8MlCTlkpaAdN6ANoCEdArZXdfw7T2HV9lChoBkdAngavkeZG8WgHTegDaAhHQK2e02mYSg51fZQoaAZHQJ9rZ4RmK65oB03oA2gIR0CtoX2IO6NEdX2UKGgGR0CcW6krPMSsaAdN6ANoCEdAraGihxo7FXV9lChoBkdAmHr3uAqd6WgHTegDaAhHQK2j3B0IToN1fZQoaAZHQKBmHspG4I9oB03oA2gIR0CtsCMoMKCydX2UKGgGR0CgMRPzOHFhaAdN6ANoCEdArbLYCIUJwHV9lChoBkdAn97Oo1k1/GgHTegDaAhHQK2y+qYJE6V1fZQoaAZHQKC1KVHFxXJoB03oA2gIR0CttUyyMUAUdX2UKGgGR0CgmAZntfG/aAdN6ANoCEdArb3gGKQ7tHV9lChoBkdAn9itDx9XtGgHTegDaAhHQK3AcEh7mdR1fZQoaAZHQJ0jPjFQ2uRoB03oA2gIR0CtwJV1wHZ9dX2UKGgGR0Cf9NMI/qxDaAdN6ANoCEdArcLaFAVwgnV9lChoBkdAoFnf20zCUGgHTegDaAhHQK3PEVVxS511fZQoaAZHQKCA7vF3pwFoB03oA2gIR0Ct0j9RrJr+dX2UKGgGR0CghUzTfBN3aAdN6ANoCEdArdJh1RtP6HV9lChoBkdAnqhkf9xZMmgHTegDaAhHQK3UjpyIYWN1fZQoaAZHQKA1oZeiSJVoB03oA2gIR0Ct3YxZlnRLdX2UKGgGR0CfZwqVQhwEaAdN6ANoCEdAreAe9alk6XV9lChoBkdAoFUH5JsfrGgHTegDaAhHQK3gQ64lQdl1fZQoaAZHQJ60rgvUSZloB03oA2gIR0Ct4pVqesgddX2UKGgGR0CgHrhSUC7saAdN6ANoCEdAre7oRAbADnV9lChoBkdAoN0qgTRIBmgHTegDaAhHQK3yGukk8ih1fZQoaAZHQKEAG0ojOcFoB03oA2gIR0Ct8j2rfcesdX2UKGgGR0CgP7lZowmFaAdN6ANoCEdArfSDHlwLmnV9lChoBkdAoGnDBZZB9mgHTegDaAhHQK39iR5kbxV1fZQoaAZHQJ/Db4wh4dJoB03oA2gIR0CuAGIicG1QdX2UKGgGR0CgD9cv24/eaAdN6ANoCEdArgCE+xGDtnV9lChoBkdAnu5o/qxC6mgHTegDaAhHQK4C41WKdhB1fZQoaAZHQJ7etKPGQ0ZoB03oA2gIR0CuEBkFOfukdX2UKGgGR0CfwU+OOsDGaAdN6ANoCEdArhMCe2/i53V9lChoBkdAn0eSblRxcWgHTegDaAhHQK4TJ49ovi91fZQoaAZHQJ/+7blA/s5oB03oA2gIR0CuFZA1WKdhdX2UKGgGR0Cf8LrrPdEcaAdN6ANoCEdArh603++/QHV9lChoBkdAn45JDzAerGgHTegDaAhHQK4hjAzpHI91fZQoaAZHQKAs8FL39JloB03oA2gIR0CuIbJyp71JdX2UKGgGR0CfPKK8L8aXaAdN6ANoCEdAriQHsmfGuXV9lChoBkdAnoh4ZuQ6qGgHTegDaAhHQK4xHuYQarF1fZQoaAZHQJ3kYizLOiZoB03oA2gIR0CuM+NQbdaddX2UKGgGR0CeINBciW3SaAdN6ANoCEdArjQIw0wai3V9lChoBkdAnx5zA8B+4WgHTegDaAhHQK42TiWE9Md1fZQoaAZHQKBsBN21Ul1oB03oA2gIR0CuPw6By0a7dX2UKGgGR0CgtPFruYx+aAdN6ANoCEdArkHHcFhXsHV9lChoBkdAoK1ALeANG2gHTegDaAhHQK5B69WZJCl1fZQoaAZHQASCHIp6QeVoB0uBaAhHQK5DuU+LWI51fZQoaAZHQKCU7QNTcZdoB03oA2gIR0CuRC4jB2wFdX2UKGgGR0Cg+2U+kgwHaAdN6ANoCEdArlDYAEMb33V9lChoBkdAoGRM/GEPD2gHTegDaAhHQK5TmpLmITJ1fZQoaAZHQJ4rAgGKQ7toB03oA2gIR0CuVYVkDp1SdX2UKGgGR0CfNHk0aZQYaAdN6ANoCEdArlX5F3IMjXV9lChoBkdAnpcBa1TisGgHTegDaAhHQK5exFuvUz91fZQoaAZHQJ1bftnf2sdoB03oA2gIR0CuYV1jI7vHdX2UKGgGR0CcQl48lolEaAdN6ANoCEdArmNHUtqYZ3V9lChoBkdAnkpXwG4ZuWgHTegDaAhHQK5jx/axoqV1fZQoaAZHQJovxoGpuMxoB03oA2gIR0CucFbxNIsidX2UKGgGR0CZpBGsFMZhaAdN6ANoCEdArnL2R/3Fk3V9lChoBkdAnXxgUpNKy2gHTegDaAhHQK504B06o2p1fZQoaAZHQJljVTho/RpoB03oA2gIR0CudU/wqiGndX2UKGgGR0CchFuDSPU8aAdN6ANoCEdArn31UIcBEXV9lChoBkdAncbRSk0rLGgHTegDaAhHQK6ApT8YQ8R1fZQoaAZHQJvsZmQKa5RoB03oA2gIR0CugpjJU5uJdX2UKGgGR0CccUaTwDvFaAdN6ANoCEdAroMRuO0b+HV9lChoBkdAnVI0+gUUPGgHTegDaAhHQK6P08wHqu91fZQoaAZHQJ1NdKoQ4CJoB03oA2gIR0Cukm7/ffoBdX2UKGgGR0CfJBtw71ZlaAdN6ANoCEdArpRIlQdjonV9lChoBkdAnXBXnMdLhGgHTegDaAhHQK6UvDsMRYl1fZQoaAZHQJ58RdQfp2VoB03oA2gIR0CunW3t0FKTdX2UKGgGR0CcPYM4cWCVaAdN6ANoCEdArqAV0knkUHV9lChoBkdAnILKL4vexmgHTegDaAhHQK6h+wL3K0V1fZQoaAZHQJwXOFQEZBNoB03oA2gIR0CuonRKQJXydX2UKGgGR0CbwCh3JPqLaAdN6ANoCEdArq6eNT987nV9lChoBkdAmnD1XvH932gHTegDaAhHQK6xbGc4HX51fZQoaAZHQJtLF5kbxVhoB03oA2gIR0CuszwGwA2idX2UKGgGR0CbjrpDNQj2aAdN6ANoCEdArrOqHCXQdHV9lChoBkdAnQHh20Re1WgHTegDaAhHQK68KYoAn2J1fZQoaAZHQJx8d5/smfJoB03oA2gIR0Cuvshd+ocadX2UKGgGR0CdxlD50r9VaAdN6ANoCEdArsCpmmLtNXV9lChoBkdAngqLz5GjK2gHTegDaAhHQK7BGm+j/Mp1fZQoaAZHQJ1S3VYp2EFoB03oA2gIR0CuzIFlkH2RdX2UKGgGR0CcXITIvJzUaAdN6ANoCEdArs/B/wy6+XV9lChoBkdAncuxun/DL2gHTegDaAhHQK7RoNH6Mzd1fZQoaAZHQJ3Ck8gZCOZoB03oA2gIR0Cu0hQmE5AAdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55beb77be76bf491eba0c902dd2822598c5dac3f5d30e1bae814c45e64b84d95
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19ef57d8117bf80690cb290108d0846f6c94331c467334d017b3dd9189bbe8b9
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8be8653e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8be8653ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8be8653f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8be8658040>", "_build": "<function ActorCriticPolicy._build at 0x7f8be86580d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8be8658160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8be86581f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8be8658280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8be8658310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8be86583a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8be8658430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8be86584c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8be8651d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679448113023184654, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJEM3T67hCa/VMmXvqmnqD4f2pk+yvIfPwh/FjzRVGy/LIs8P09NSz+99E0/+D8+vig88z7F3fE+h8YCP7puoDytyC0/8KetvhtMz75T6dY9/28OP+3bnD9xhwE/3BUsvj65OD9mOpE+bnQjP4SJRb/ifM49oywav1XuX751CMa+/LdJPrRPXr+G4/89AJPLPp2Etb/ivFk8IembvfRC2j/k3Fc9o1hBP0b9vb5z+ig/Mta1PwVkxz7xwWa/nUBUv+twrz+6p/K+7kFPP0tRHD+sY7G/l6FhwG50Iz/44aU//utWPVVpEL+iISS+Kha3PIvo/L7lPSe+1/1IvnSIDT/9wqG/swteP+pvpb7vniJAElbcv78LfD9DNBq+BdGwPzP9zj83Dvq+Sjq2v4+VNL8DrqM/Udmvvxj0KD9D8AU9rGOxv2Y6kT5udCM/+OGlPx7eg77+goU7XgX4Pp4/Yz/FJzK/7rhVP0ktfTzTOxC/gDkSv53apT+h3TA/Eu7qPqVih79edqY/I/sKP1YPuT97ibw/Q+4nv+5uu76DEEW/TiB7P3/DAMA7Qjc/R4ukPT65OD9mOpE+bnQjP4SJRb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACh1nM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgDmfPQAAAABL/v+/AAAAAMT+xr0AAAAAb5LpPwAAAADU06g9AAAAAMEm3j8AAAAA7E0KvgAAAAC9qOK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmzweNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN+5D74AAAAA/8vvvwAAAACBMw49AAAAAAww2T8AAAAAW3DfPQAAAADqw+M/AAAAANK6+r0AAAAAf5LzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFp6NTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDPY5C9AAAAADe/778AAAAAmNG0vQAAAADoDOk/AAAAANqMcTsAAAAAqRTePwAAAACKbgi+AAAAAGap7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnyy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmWkSPgAAAACXivW/AAAAADa4sL0AAAAAqnjxPwAAAAD3hZk9AAAAAFS87T8AAAAAkYUTvQAAAAB2DPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4H3Z5AyEeMAWyUTegDjAF0lEdArVYGizsyBXV9lChoBkdAn4gn1BdD6WgHTegDaAhHQK1WKfDk2gp1fZQoaAZHQJ/TGxIJ7cBoB03oA2gIR0CtWFbUG3WndX2UKGgGR0Cgl5K+8Gs4aAdN6ANoCEdArWDaKNyYHHV9lChoBkdAoGMnkcS5AmgHTegDaAhHQK1jdc1O0sx1fZQoaAZHQKChaC/47BBoB03oA2gIR0CtY5rHuJDWdX2UKGgGR0CgqT5NGmUGaAdN6ANoCEdArWXaynk1dnV9lChoBkdAoMHGIVM232gHTegDaAhHQK1yRGax5cF1fZQoaAZHQJ/xE8lolD5oB03oA2gIR0CtdO6ySmqHdX2UKGgGR0CdcLjHGS6laAdN6ANoCEdArXUSJ9AoonV9lChoBkdAnUhg4Otnw2gHTegDaAhHQK13Qmnfl6t1fZQoaAZHQJxa19roGINoB03oA2gIR0Ctf52kSElFdX2UKGgGR0CdqLZ2ZApsaAdN6ANoCEdArYJOzyBkJHV9lChoBkdAmxSk9lmOEWgHTegDaAhHQK2Cc87IT5B1fZQoaAZHQJtnv9l2/ztoB03oA2gIR0CthKJgssg/dX2UKGgGR0CeJt+az/p/aAdN6ANoCEdArZDgIppeu3V9lChoBkdAoKA4nQY1pGgHTegDaAhHQK2TfJul41R1fZQoaAZHQJ+Fe7+T/yZoB03oA2gIR0Ctk58S5AhTdX2UKGgGR0Cc8MlCTlkpaAdN6ANoCEdArZXdfw7T2HV9lChoBkdAngavkeZG8WgHTegDaAhHQK2e02mYSg51fZQoaAZHQJ9rZ4RmK65oB03oA2gIR0CtoX2IO6NEdX2UKGgGR0CcW6krPMSsaAdN6ANoCEdAraGihxo7FXV9lChoBkdAmHr3uAqd6WgHTegDaAhHQK2j3B0IToN1fZQoaAZHQKBmHspG4I9oB03oA2gIR0CtsCMoMKCydX2UKGgGR0CgMRPzOHFhaAdN6ANoCEdArbLYCIUJwHV9lChoBkdAn97Oo1k1/GgHTegDaAhHQK2y+qYJE6V1fZQoaAZHQKC1KVHFxXJoB03oA2gIR0CttUyyMUAUdX2UKGgGR0CgmAZntfG/aAdN6ANoCEdArb3gGKQ7tHV9lChoBkdAn9itDx9XtGgHTegDaAhHQK3AcEh7mdR1fZQoaAZHQJ0jPjFQ2uRoB03oA2gIR0CtwJV1wHZ9dX2UKGgGR0Cf9NMI/qxDaAdN6ANoCEdArcLaFAVwgnV9lChoBkdAoFnf20zCUGgHTegDaAhHQK3PEVVxS511fZQoaAZHQKCA7vF3pwFoB03oA2gIR0Ct0j9RrJr+dX2UKGgGR0CghUzTfBN3aAdN6ANoCEdArdJh1RtP6HV9lChoBkdAnqhkf9xZMmgHTegDaAhHQK3UjpyIYWN1fZQoaAZHQKA1oZeiSJVoB03oA2gIR0Ct3YxZlnRLdX2UKGgGR0CfZwqVQhwEaAdN6ANoCEdAreAe9alk6XV9lChoBkdAoFUH5JsfrGgHTegDaAhHQK3gQ64lQdl1fZQoaAZHQJ60rgvUSZloB03oA2gIR0Ct4pVqesgddX2UKGgGR0CgHrhSUC7saAdN6ANoCEdAre7oRAbADnV9lChoBkdAoN0qgTRIBmgHTegDaAhHQK3yGukk8ih1fZQoaAZHQKEAG0ojOcFoB03oA2gIR0Ct8j2rfcesdX2UKGgGR0CgP7lZowmFaAdN6ANoCEdArfSDHlwLmnV9lChoBkdAoGnDBZZB9mgHTegDaAhHQK39iR5kbxV1fZQoaAZHQJ/Db4wh4dJoB03oA2gIR0CuAGIicG1QdX2UKGgGR0CgD9cv24/eaAdN6ANoCEdArgCE+xGDtnV9lChoBkdAnu5o/qxC6mgHTegDaAhHQK4C41WKdhB1fZQoaAZHQJ7etKPGQ0ZoB03oA2gIR0CuEBkFOfukdX2UKGgGR0CfwU+OOsDGaAdN6ANoCEdArhMCe2/i53V9lChoBkdAn0eSblRxcWgHTegDaAhHQK4TJ49ovi91fZQoaAZHQJ/+7blA/s5oB03oA2gIR0CuFZA1WKdhdX2UKGgGR0Cf8LrrPdEcaAdN6ANoCEdArh603++/QHV9lChoBkdAn45JDzAerGgHTegDaAhHQK4hjAzpHI91fZQoaAZHQKAs8FL39JloB03oA2gIR0CuIbJyp71JdX2UKGgGR0CfPKK8L8aXaAdN6ANoCEdAriQHsmfGuXV9lChoBkdAnoh4ZuQ6qGgHTegDaAhHQK4xHuYQarF1fZQoaAZHQJ3kYizLOiZoB03oA2gIR0CuM+NQbdaddX2UKGgGR0CeINBciW3SaAdN6ANoCEdArjQIw0wai3V9lChoBkdAnx5zA8B+4WgHTegDaAhHQK42TiWE9Md1fZQoaAZHQKBsBN21Ul1oB03oA2gIR0CuPw6By0a7dX2UKGgGR0CgtPFruYx+aAdN6ANoCEdArkHHcFhXsHV9lChoBkdAoK1ALeANG2gHTegDaAhHQK5B69WZJCl1fZQoaAZHQASCHIp6QeVoB0uBaAhHQK5DuU+LWI51fZQoaAZHQKCU7QNTcZdoB03oA2gIR0CuRC4jB2wFdX2UKGgGR0Cg+2U+kgwHaAdN6ANoCEdArlDYAEMb33V9lChoBkdAoGRM/GEPD2gHTegDaAhHQK5TmpLmITJ1fZQoaAZHQJ4rAgGKQ7toB03oA2gIR0CuVYVkDp1SdX2UKGgGR0CfNHk0aZQYaAdN6ANoCEdArlX5F3IMjXV9lChoBkdAnpcBa1TisGgHTegDaAhHQK5exFuvUz91fZQoaAZHQJ1bftnf2sdoB03oA2gIR0CuYV1jI7vHdX2UKGgGR0CcQl48lolEaAdN6ANoCEdArmNHUtqYZ3V9lChoBkdAnkpXwG4ZuWgHTegDaAhHQK5jx/axoqV1fZQoaAZHQJovxoGpuMxoB03oA2gIR0CucFbxNIsidX2UKGgGR0CZpBGsFMZhaAdN6ANoCEdArnL2R/3Fk3V9lChoBkdAnXxgUpNKy2gHTegDaAhHQK504B06o2p1fZQoaAZHQJljVTho/RpoB03oA2gIR0CudU/wqiGndX2UKGgGR0CchFuDSPU8aAdN6ANoCEdArn31UIcBEXV9lChoBkdAncbRSk0rLGgHTegDaAhHQK6ApT8YQ8R1fZQoaAZHQJvsZmQKa5RoB03oA2gIR0CugpjJU5uJdX2UKGgGR0CccUaTwDvFaAdN6ANoCEdAroMRuO0b+HV9lChoBkdAnVI0+gUUPGgHTegDaAhHQK6P08wHqu91fZQoaAZHQJ1NdKoQ4CJoB03oA2gIR0Cukm7/ffoBdX2UKGgGR0CfJBtw71ZlaAdN6ANoCEdArpRIlQdjonV9lChoBkdAnXBXnMdLhGgHTegDaAhHQK6UvDsMRYl1fZQoaAZHQJ58RdQfp2VoB03oA2gIR0CunW3t0FKTdX2UKGgGR0CcPYM4cWCVaAdN6ANoCEdArqAV0knkUHV9lChoBkdAnILKL4vexmgHTegDaAhHQK6h+wL3K0V1fZQoaAZHQJwXOFQEZBNoB03oA2gIR0CuonRKQJXydX2UKGgGR0CbwCh3JPqLaAdN6ANoCEdArq6eNT987nV9lChoBkdAmnD1XvH932gHTegDaAhHQK6xbGc4HX51fZQoaAZHQJtLF5kbxVhoB03oA2gIR0CuszwGwA2idX2UKGgGR0CbjrpDNQj2aAdN6ANoCEdArrOqHCXQdHV9lChoBkdAnQHh20Re1WgHTegDaAhHQK68KYoAn2J1fZQoaAZHQJx8d5/smfJoB03oA2gIR0Cuvshd+ocadX2UKGgGR0CdxlD50r9VaAdN6ANoCEdArsCpmmLtNXV9lChoBkdAngqLz5GjK2gHTegDaAhHQK7BGm+j/Mp1fZQoaAZHQJ1S3VYp2EFoB03oA2gIR0CuzIFlkH2RdX2UKGgGR0CcXITIvJzUaAdN6ANoCEdArs/B/wy6+XV9lChoBkdAncuxun/DL2gHTegDaAhHQK7RoNH6Mzd1fZQoaAZHQJ3Ck8gZCOZoB03oA2gIR0Cu0hQmE5AAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14af8881eabfa672100a34cad55d555e91d9c25ac0556973dc8911eceb1ad98a
3
+ size 1235237
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1870.9732377758714, "std_reward": 16.886414811006148, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T02:35:34.013319"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72c1a71362515afcc19926a2ea857866f495a7dfe31d3f5e3d76b05706078c97
3
+ size 2136