a2c-PandaReachDense-v2 / config.json
charmquark's picture
commit
b36a901
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f49cc018b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49cc015e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 671540, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679634525814108697, "learning_rate": 0.003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAQoRPpD00z9XoKk+l6msP+Etlj//pHs/c2alPzm7MT8r+6k/uau4PjeG4r+ynBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGdGuPttXxD8ncUc+uK8gPwmxnT9DUqU/LcuEP4k+Jj+LRqQ/cABRPlxT3L+ToKc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAABChE+kPTTP1egqT6wg8u/ixjBv4cuHz6Xqaw/4S2WP/+kez/ni2w+VsUVP9Nyrz1zZqU/ObsxPyv7qT/2+7m+rhi6P4/+TT+5q7g+N4biv7KcFz8Bm4a/EDmCP3Cimr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.14163972 1.655901 0.33130142]\n [ 1.3489255 1.1732751 0.9829864 ]\n [ 1.292189 0.69426304 1.3279775 ]\n [ 0.36068514 -1.7697209 0.59223473]]", "desired_goal": "[[ 0.34143904 1.5339311 0.19476758]\n [ 0.62768126 1.2319652 1.2915729 ]\n [ 1.0374504 0.6493917 1.2834028 ]\n [ 0.20410323 -1.7212939 1.3095878 ]]", "observation": "[[ 0.14163972 1.655901 0.33130142 -1.5899563 -1.5085615 0.15545093]\n [ 1.3489255 1.1732751 0.9829864 0.23100244 0.58504236 0.08566823]\n [ 1.292189 0.69426304 1.3279775 -0.36325043 1.4538782 0.8046655 ]\n [ 0.36068514 -1.7697209 0.59223473 -1.0516053 1.0173664 -1.2080822 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApZpBOcq6CD69A3M+8WSovWGhuLu4i9081ZfjvYaDyT0l4Y09kSeFvHqZ572YX4Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.8463524e-04 1.3352504e-01 2.3731895e-01]\n [-8.2223780e-02 -5.6344722e-03 2.7044162e-02]\n [-1.1112944e-01 9.8395392e-02 6.9277085e-02]\n [-1.6254218e-02 -1.1308570e-01 2.5854182e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7761533333333334, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1a90PjxLA8CUhpRSlIwBbJRLMowBdJRHQKDo3Adn0051fZQoaAZoCWgPQwhTexFtxzQEwJSGlFKUaBVLMmgWR0Cg6DRAKOT8dX2UKGgGaAloD0MIHR7C+Gl8AMCUhpRSlGgVSzJoFkdAoOeJ4rz5GnV9lChoBmgJaA9DCJzgm6bPDvy/lIaUUpRoFUsyaBZHQKDm7J5E+gV1fZQoaAZoCWgPQwhzDp4JTXICwJSGlFKUaBVLMmgWR0Cg6o6eXiR5dX2UKGgGaAloD0MI4uoAiLt6AMCUhpRSlGgVSzJoFkdAoOnm4Cp3o3V9lChoBmgJaA9DCDyHMlTFlPu/lIaUUpRoFUsyaBZHQKDpPHe7+UB1fZQoaAZoCWgPQwhzS6shca8EwJSGlFKUaBVLMmgWR0Cg6J8rAgxKdX2UKGgGaAloD0MIfm/Tn/3IAMCUhpRSlGgVSzJoFkdAoOw4ogFHKHV9lChoBmgJaA9DCDRmEvWCLwbAlIaUUpRoFUsyaBZHQKDrkMZxaPl1fZQoaAZoCWgPQwiHGRpPBDEDwJSGlFKUaBVLMmgWR0Cg6uZpJwsHdX2UKGgGaAloD0MIArnEkQfCAMCUhpRSlGgVSzJoFkdAoOpJHI6sAHV9lChoBmgJaA9DCACQEyaMBgLAlIaUUpRoFUsyaBZHQKDt8R9PUKB1fZQoaAZoCWgPQwjwplt2iD//v5SGlFKUaBVLMmgWR0Cg7UmB4D9wdX2UKGgGaAloD0MI86/llevNAMCUhpRSlGgVSzJoFkdAoOyfMQmNR3V9lChoBmgJaA9DCL8s7dRcDgXAlIaUUpRoFUsyaBZHQKDsAcQyylh1fZQoaAZoCWgPQwi6MT1hiecCwJSGlFKUaBVLMmgWR0Cg767jLjgidX2UKGgGaAloD0MIGckeoWZIBMCUhpRSlGgVSzJoFkdAoO8HWz4UOHV9lChoBmgJaA9DCODzwwjhkQDAlIaUUpRoFUsyaBZHQKDuXTG5tnB1fZQoaAZoCWgPQwjgoL36eGj/v5SGlFKUaBVLMmgWR0Cg7b/yoXKsdX2UKGgGaAloD0MIc0wW9x/5AcCUhpRSlGgVSzJoFkdAoPF0IRh+fHV9lChoBmgJaA9DCHVWC+wxEQTAlIaUUpRoFUsyaBZHQKDwzKPn0TV1fZQoaAZoCWgPQwgzp8tiYnMAwJSGlFKUaBVLMmgWR0Cg8CJMxoIwdX2UKGgGaAloD0MIHCPZI9TMBsCUhpRSlGgVSzJoFkdAoO+FJJ5E+nV9lChoBmgJaA9DCAXhCijU0/+/lIaUUpRoFUsyaBZHQKDzTYW+GoJ1fZQoaAZoCWgPQwg1sistI1UBwJSGlFKUaBVLMmgWR0Cg8qXyiEg4dX2UKGgGaAloD0MIopv9gXJ7A8CUhpRSlGgVSzJoFkdAoPH7yJ9Ao3V9lChoBmgJaA9DCP2gLlIoywrAlIaUUpRoFUsyaBZHQKDxXnWattB1fZQoaAZoCWgPQwiVmj3QCgwGwJSGlFKUaBVLMmgWR0Cg9SIzFdcCdX2UKGgGaAloD0MIBP9byY6N/7+UhpRSlGgVSzJoFkdAoPR6ckMTe3V9lChoBmgJaA9DCL/xtWeWZALAlIaUUpRoFUsyaBZHQKDz0B+4LCx1fZQoaAZoCWgPQwgP7WMFv00BwJSGlFKUaBVLMmgWR0Cg8zL4vexfdX2UKGgGaAloD0MIDfs9sU61AsCUhpRSlGgVSzJoFkdAoPbLK3d9D3V9lChoBmgJaA9DCBoVONkGLv2/lIaUUpRoFUsyaBZHQKD2I3hn8Kp1fZQoaAZoCWgPQwju7CsP0hMBwJSGlFKUaBVLMmgWR0Cg9Xjp1RtQdX2UKGgGaAloD0MIKNU+HY95BcCUhpRSlGgVSzJoFkdAoPTbfLs8gnV9lChoBmgJaA9DCLq7zob8EwTAlIaUUpRoFUsyaBZHQKD33wFTvRZ1fZQoaAZoCWgPQwiCqtGrAcr/v5SGlFKUaBVLMmgWR0Cg9zaKcd5qdX2UKGgGaAloD0MIBtfc0f8SDcCUhpRSlGgVSzJoFkdAoPaLe40/GHV9lChoBmgJaA9DCLvUCP1MfQXAlIaUUpRoFUsyaBZHQKD17WMju8d1fZQoaAZoCWgPQwgL8N3mjVMBwJSGlFKUaBVLMmgWR0Cg+Ok92X9jdX2UKGgGaAloD0MICcIVUKgHAcCUhpRSlGgVSzJoFkdAoPhAwCbMHXV9lChoBmgJaA9DCLNcNjrnJwrAlIaUUpRoFUsyaBZHQKD3lcvduYR1fZQoaAZoCWgPQwhSuvQvSeX9v5SGlFKUaBVLMmgWR0Cg9vfVI7NjdX2UKGgGaAloD0MIotKImX1+BMCUhpRSlGgVSzJoFkdAoPn8iyIHknV9lChoBmgJaA9DCN481SE3Yw3AlIaUUpRoFUsyaBZHQKD5VC53C9B1fZQoaAZoCWgPQwhFLc2tENb+v5SGlFKUaBVLMmgWR0Cg+KkzoEB9dX2UKGgGaAloD0MIf/j578FrAcCUhpRSlGgVSzJoFkdAoPgLKT0QLHV9lChoBmgJaA9DCN+I7lnXCAHAlIaUUpRoFUsyaBZHQKD7CgX/HYJ1fZQoaAZoCWgPQwiN1eb/VWcCwJSGlFKUaBVLMmgWR0Cg+mF0o0AMdX2UKGgGaAloD0MIaHdIMUACAcCUhpRSlGgVSzJoFkdAoPm2VJL/THV9lChoBmgJaA9DCAiT4uMTUgvAlIaUUpRoFUsyaBZHQKD5GG9Htnh1fZQoaAZoCWgPQwgGDmjpCpYMwJSGlFKUaBVLMmgWR0Cg/B+10DEFdX2UKGgGaAloD0MIx/KuesBcAsCUhpRSlGgVSzJoFkdAoPt3KSxJNHV9lChoBmgJaA9DCGTKh6Bq1APAlIaUUpRoFUsyaBZHQKD6zBWxQi11fZQoaAZoCWgPQwjaU3JO7KEGwJSGlFKUaBVLMmgWR0Cg+i4E4ecQdX2UKGgGaAloD0MIF2U2yCTjAcCUhpRSlGgVSzJoFkdAoP0p84Pwu3V9lChoBmgJaA9DCHo4gem0TgXAlIaUUpRoFUsyaBZHQKD8gWdmQKd1fZQoaAZoCWgPQwjKiXYVUh4FwJSGlFKUaBVLMmgWR0Cg+9ZSvTw2dX2UKGgGaAloD0MImiZsPxkjA8CUhpRSlGgVSzJoFkdAoPs4WWQfZHV9lChoBmgJaA9DCDlFR3L5DwPAlIaUUpRoFUsyaBZHQKD+PhZQpF11fZQoaAZoCWgPQwgYQWMmUU8JwJSGlFKUaBVLMmgWR0Cg/ZWQXAM2dX2UKGgGaAloD0MIuJIdG4G4AsCUhpRSlGgVSzJoFkdAoPzqjL0SRXV9lChoBmgJaA9DCDLH8q56IAvAlIaUUpRoFUsyaBZHQKD8THQyAQR1fZQoaAZoCWgPQwh8nj9tVAcCwJSGlFKUaBVLMmgWR0Cg/0nP3SKFdX2UKGgGaAloD0MIE5uPa0NF/7+UhpRSlGgVSzJoFkdAoP6hTER8MXV9lChoBmgJaA9DCJRt4A7UCQLAlIaUUpRoFUsyaBZHQKD99kgfU4J1fZQoaAZoCWgPQwgx0ova/SoGwJSGlFKUaBVLMmgWR0Cg/VhFNL13dX2UKGgGaAloD0MIBd80fXaAA8CUhpRSlGgVSzJoFkdAoQBoWac7Q3V9lChoBmgJaA9DCFBWDFcHQAPAlIaUUpRoFUsyaBZHQKD/v+CsfaJ1fZQoaAZoCWgPQwh7vma5bFQEwJSGlFKUaBVLMmgWR0Cg/xTP8hs7dX2UKGgGaAloD0MIQGzp0VQvAcCUhpRSlGgVSzJoFkdAoP52v4dp7HV9lChoBmgJaA9DCBVvZB75QwDAlIaUUpRoFUsyaBZHQKEBgWWQfZF1fZQoaAZoCWgPQwjYLJeNznkDwJSGlFKUaBVLMmgWR0ChANlC1JDmdX2UKGgGaAloD0MIxRuZR/5AAsCUhpRSlGgVSzJoFkdAoQAuLHdXT3V9lChoBmgJaA9DCFBxHHi1XAbAlIaUUpRoFUsyaBZHQKD/kCkoF3Z1fZQoaAZoCWgPQwjJ5xVPPZIDwJSGlFKUaBVLMmgWR0ChApbqyGBXdX2UKGgGaAloD0MIG4Uks3rnA8CUhpRSlGgVSzJoFkdAoQHue+VTrHV9lChoBmgJaA9DCM45eCY0KQDAlIaUUpRoFUsyaBZHQKEBQ2qDK5l1fZQoaAZoCWgPQwgFie3uAToDwJSGlFKUaBVLMmgWR0ChAKVMmF8HdX2UKGgGaAloD0MIvDydK0ppA8CUhpRSlGgVSzJoFkdAoQOrmU4aP3V9lChoBmgJaA9DCO2CwTV3NAnAlIaUUpRoFUsyaBZHQKEDAxyn1nN1fZQoaAZoCWgPQwgErFW7JkQCwJSGlFKUaBVLMmgWR0ChAlghr30xdX2UKGgGaAloD0MIml/NAYKZB8CUhpRSlGgVSzJoFkdAoQG6EDhcaHV9lChoBmgJaA9DCN9t3jgpDArAlIaUUpRoFUsyaBZHQKEEvVwxWT51fZQoaAZoCWgPQwjY8sr1thkFwJSGlFKUaBVLMmgWR0ChBBTfixVydX2UKGgGaAloD0MIn1kSoKb2BMCUhpRSlGgVSzJoFkdAoQNp1q33H3V9lChoBmgJaA9DCFPL1voiQQvAlIaUUpRoFUsyaBZHQKECy8nNPgx1fZQoaAZoCWgPQwh+dOrKZ5kHwJSGlFKUaBVLMmgWR0ChBc4cWCVbdX2UKGgGaAloD0MIEAaeew9XAsCUhpRSlGgVSzJoFkdAoQUlxGUfP3V9lChoBmgJaA9DCEJaY9AJYQfAlIaUUpRoFUsyaBZHQKEEeuTRplB1fZQoaAZoCWgPQwgwaCEBo2sAwJSGlFKUaBVLMmgWR0ChA9z1CgK4dX2UKGgGaAloD0MI527XS1NEB8CUhpRSlGgVSzJoFkdAoQbmQMhHLHV9lChoBmgJaA9DCDEG1nH8MAHAlIaUUpRoFUsyaBZHQKEGPcpLEk11fZQoaAZoCWgPQwgXoG016ywKwJSGlFKUaBVLMmgWR0ChBZK59Vm0dX2UKGgGaAloD0MICeHRxhGrAcCUhpRSlGgVSzJoFkdAoQT0qc3ERHV9lChoBmgJaA9DCMR8eQH2cQHAlIaUUpRoFUsyaBZHQKEH9IWgvlF1fZQoaAZoCWgPQwgotoKmJZYEwJSGlFKUaBVLMmgWR0ChB0v2Xb/PdX2UKGgGaAloD0MIW3heKjbGBMCUhpRSlGgVSzJoFkdAoQag9cKPXHV9lChoBmgJaA9DCJYmpaDbawbAlIaUUpRoFUsyaBZHQKEGAvexfOV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 33577, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}