File size: 30,052 Bytes
169c1c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How have algorithms in hiring and credit decisions been shown to
impact existing inequities, according to the context?
sentences:
- 'Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future
at the New Frontier of
Power. Public Affairs. 2019.
64. Angela Chen. Why the Future of Life Insurance May Depend on Your Online Presence.
The Verge. Feb.
7, 2019.
https://www.theverge.com/2019/2/7/18211890/social-media-life-insurance-new-york-algorithms-big
data-discrimination-online-records
68'
- "SECTION TITLE\nFOREWORD\nAmong the great challenges posed to democracy today\
\ is the use of technology, data, and automated systems in \nways that threaten\
\ the rights of the American public. Too often, these tools are used to limit\
\ our opportunities and \nprevent our access to critical resources or services.\
\ These problems are well documented. In America and around \nthe world, systems\
\ supposed to help with patient care have proven unsafe, ineffective, or biased.\
\ Algorithms used \nin hiring and credit decisions have been found to reflect\
\ and reproduce existing unwanted inequities or embed \nnew harmful bias and discrimination.\
\ Unchecked social media data collection has been used to threaten people’s"
- "ways and to the greatest extent possible; where not possible, alternative privacy\
\ by design safeguards should be \nused. Systems should not employ user experience\
\ and design decisions that obfuscate user choice or burden \nusers with defaults\
\ that are privacy invasive. Consent should only be used to justify collection\
\ of data in cases \nwhere it can be appropriately and meaningfully given. Any\
\ consent requests should be brief, be understandable \nin plain language, and\
\ give you agency over data collection and the specific context of use; current\
\ hard-to\nunderstand notice-and-choice practices for broad uses of data should\
\ be changed. Enhanced protections and"
- source_sentence: What factors should be considered when tailoring the extent of
explanation provided by a system based on risk level?
sentences:
- 'ENDNOTES
96. National Science Foundation. NSF Program on Fairness in Artificial Intelligence
in Collaboration
with Amazon (FAI). Accessed July 20, 2022.
https://www.nsf.gov/pubs/2021/nsf21585/nsf21585.htm
97. Kyle Wiggers. Automatic signature verification software threatens to disenfranchise
U.S. voters.
VentureBeat. Oct. 25, 2020.
https://venturebeat.com/2020/10/25/automatic-signature-verification-software-threatens-to
disenfranchise-u-s-voters/
98. Ballotpedia. Cure period for absentee and mail-in ballots. Article retrieved
Apr 18, 2022.
https://ballotpedia.org/Cure_period_for_absentee_and_mail-in_ballots
99. Larry Buchanan and Alicia Parlapiano. Two of these Mail Ballot Signatures
are by the Same Person.'
- "data. “Sensitive domains” are those in which activities being conducted can cause\
\ material harms, including signifi\ncant adverse effects on human rights such\
\ as autonomy and dignity, as well as civil liberties and civil rights. Domains\
\ \nthat have historically been singled out as deserving of enhanced data protections\
\ or where such enhanced protections \nare reasonably expected by the public include,\
\ but are not limited to, health, family planning and care, employment, \neducation,\
\ criminal justice, and personal finance. In the context of this framework, such\
\ domains are considered \nsensitive whether or not the specifics of a system\
\ context would necessitate coverage under existing law, and domains"
- "transparent models should be used), rather than as an after-the-decision interpretation.\
\ In other settings, the \nextent of explanation provided should be tailored to\
\ the risk level. \nValid. The explanation provided by a system should accurately\
\ reflect the factors and the influences that led \nto a particular decision,\
\ and should be meaningful for the particular customization based on purpose,\
\ target, \nand level of risk. While approximation and simplification may be necessary\
\ for the system to succeed based on \nthe explanatory purpose and target of the\
\ explanation, or to account for the risk of fraud or other concerns \nrelated\
\ to revealing decision-making information, such simplifications should be done\
\ in a scientifically"
- source_sentence: How do the five principles of the Blueprint for an AI Bill of Rights
function as backstops against potential harms?
sentences:
- "programs; or, \nAccess to critical resources or services, such as healthcare,\
\ financial services, safety, social services, \nnon-deceptive information about\
\ goods and services, and government benefits. \nA list of examples of automated\
\ systems for which these principles should be considered is provided in the \n\
Appendix. The Technical Companion, which follows, offers supportive guidance for\
\ any person or entity that \ncreates, deploys, or oversees automated systems.\
\ \nConsidered together, the five principles and associated practices of the Blueprint\
\ for an AI Bill of \nRights form an overlapping set of backstops against potential\
\ harms. This purposefully overlapping"
- "those laws beyond providing them as examples, where appropriate, of existing\
\ protective measures. This \nframework instead shares a broad, forward-leaning\
\ vision of recommended principles for automated system \ndevelopment and use\
\ to inform private and public involvement with these systems where they have\
\ the poten\ntial to meaningfully impact rights, opportunities, or access. Additionally,\
\ this framework does not analyze or \ntake a position on legislative and regulatory\
\ proposals in municipal, state, and federal government, or those in \nother countries.\
\ \nWe have seen modest progress in recent years, with some state and local governments\
\ responding to these prob"
- "HUMAN ALTERNATIVES, \nCONSIDERATION, AND \nFALLBACK \nHOW THESE PRINCIPLES CAN\
\ MOVE INTO PRACTICE\nReal-life examples of how these principles can become reality,\
\ through laws, policies, and practical \ntechnical and sociotechnical approaches\
\ to protecting rights, opportunities, and access. \nHealthcare “navigators” help\
\ people find their way through online signup forms to choose \nand obtain healthcare.\
\ A Navigator is “an individual or organization that's trained and able to help\
\ \nconsumers, small businesses, and their employees as they look for health coverage\
\ options through the \nMarketplace (a government web site), including completing\
\ eligibility and enrollment forms.”106 For"
- source_sentence: What should be documented to justify the use of each data attribute
and source in an automated system?
sentences:
- "hand and errors from data entry or other sources should be measured and limited.\
\ Any data used as the target \nof a prediction process should receive particular\
\ attention to the quality and validity of the predicted outcome \nor label to\
\ ensure the goal of the automated system is appropriately identified and measured.\
\ Additionally, \njustification should be documented for each data attribute and\
\ source to explain why it is appropriate to use \nthat data to inform the results\
\ of the automated system and why such use will not violate any applicable laws.\
\ \nIn cases of high-dimensional and/or derived attributes, such justifications\
\ can be provided as overall \ndescriptions of the attribute generation process\
\ and appropriateness. \n19"
- '13. National Artificial Intelligence Initiative Office. Agency Inventories of
AI Use Cases. Accessed Sept. 8,
2022. https://www.ai.gov/ai-use-case-inventories/
14. National Highway Traffic Safety Administration. https://www.nhtsa.gov/
15. See, e.g., Charles Pruitt. People Doing What They Do Best: The Professional
Engineers and NHTSA. Public
Administration Review. Vol. 39, No. 4. Jul.-Aug., 1979. https://www.jstor.org/stable/976213?seq=1
16. The US Department of Transportation has publicly described the health and
other benefits of these
“traffic calming” measures. See, e.g.: U.S. Department of Transportation. Traffic
Calming to Slow Vehicle'
- "target measure; unobservable targets may result in the inappropriate use of proxies.\
\ Meeting these \nstandards may require instituting mitigation procedures and\
\ other protective measures to address \nalgorithmic discrimination, avoid meaningful\
\ harm, and achieve equity goals. \nOngoing monitoring and mitigation. Automated\
\ systems should be regularly monitored to assess algo\nrithmic discrimination\
\ that might arise from unforeseen interactions of the system with inequities\
\ not \naccounted for during the pre-deployment testing, changes to the system\
\ after deployment, or changes to the \ncontext of use or associated data. Monitoring\
\ and disparity assessment should be performed by the entity"
- source_sentence: What are the implications of surveillance technologies on the rights
and opportunities of underserved communities?
sentences:
- "manage risks associated with activities or business processes common across sectors,\
\ such as the use of \nlarge language models (LLMs), cloud-based services, or\
\ acquisition. \nThis document defines risks that are novel to or exacerbated by\
\ the use of GAI. After introducing and \ndescribing these risks, the document\
\ provides a set of suggested actions to help organizations govern, \nmap, measure,\
\ and manage these risks. \n \n \n1 EO 14110 defines Generative AI as “the class\
\ of AI models that emulate the structure and characteristics of input \ndata\
\ in order to generate derived synthetic content. This can include images, videos,\
\ audio, text, and other digital"
- "rights, and community health, safety and welfare, as well ensuring better representation\
\ of all voices, \nespecially those traditionally marginalized by technological\
\ advances. Some panelists also raised the issue of \npower structures – providing\
\ examples of how strong transparency requirements in smart city projects \nhelped\
\ to reshape power and give more voice to those lacking the financial or political\
\ power to effect change. \nIn discussion of technical and governance interventions\
\ that that are needed to protect against the harms \nof these technologies, various\
\ panelists emphasized the need for transparency, data collection, and \nflexible\
\ and reactive policy development, analogous to how software is continuously updated\
\ and deployed."
- "limits its focus to both government and commercial use of surveillance technologies\
\ when juxtaposed with \nreal-time or subsequent automated analysis and when such\
\ systems have a potential for meaningful impact \non individuals’ or communities’\
\ rights, opportunities, or access. \nUNDERSERVED COMMUNITIES: The term “underserved\
\ communities” refers to communities that have \nbeen systematically denied a\
\ full opportunity to participate in aspects of economic, social, and civic life,\
\ as \nexemplified by the list in the preceding definition of “equity.” \n11"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.805
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.925
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.965
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.97
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.805
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30833333333333335
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.193
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09699999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.805
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.925
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.965
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.97
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8920929944400894
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8662916666666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8680077838827839
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.805
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.925
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.965
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.97
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.805
name: Dot Precision@1
- type: dot_precision@3
value: 0.30833333333333335
name: Dot Precision@3
- type: dot_precision@5
value: 0.193
name: Dot Precision@5
- type: dot_precision@10
value: 0.09699999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.805
name: Dot Recall@1
- type: dot_recall@3
value: 0.925
name: Dot Recall@3
- type: dot_recall@5
value: 0.965
name: Dot Recall@5
- type: dot_recall@10
value: 0.97
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8920929944400894
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8662916666666668
name: Dot Mrr@10
- type: dot_map@100
value: 0.8680077838827839
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("checkthisout/finetuned_arctic")
# Run inference
sentences = [
'What are the implications of surveillance technologies on the rights and opportunities of underserved communities?',
'limits its focus to both government and commercial use of surveillance technologies when juxtaposed with \nreal-time or subsequent automated analysis and when such systems have a potential for meaningful impact \non individuals’ or communities’ rights, opportunities, or access. \nUNDERSERVED COMMUNITIES: The term “underserved communities” refers to communities that have \nbeen systematically denied a full opportunity to participate in aspects of economic, social, and civic life, as \nexemplified by the list in the preceding definition of “equity.” \n11',
'manage risks associated with activities or business processes common across sectors, such as the use of \nlarge language models (LLMs), cloud-based services, or acquisition. \nThis document defines risks that are novel to or exacerbated by the use of GAI. After introducing and \ndescribing these risks, the document provides a set of suggested actions to help organizations govern, \nmap, measure, and manage these risks. \n \n \n1 EO 14110 defines Generative AI as “the class of AI models that emulate the structure and characteristics of input \ndata in order to generate derived synthetic content. This can include images, videos, audio, text, and other digital',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.805 |
| cosine_accuracy@3 | 0.925 |
| cosine_accuracy@5 | 0.965 |
| cosine_accuracy@10 | 0.97 |
| cosine_precision@1 | 0.805 |
| cosine_precision@3 | 0.3083 |
| cosine_precision@5 | 0.193 |
| cosine_precision@10 | 0.097 |
| cosine_recall@1 | 0.805 |
| cosine_recall@3 | 0.925 |
| cosine_recall@5 | 0.965 |
| cosine_recall@10 | 0.97 |
| cosine_ndcg@10 | 0.8921 |
| cosine_mrr@10 | 0.8663 |
| **cosine_map@100** | **0.868** |
| dot_accuracy@1 | 0.805 |
| dot_accuracy@3 | 0.925 |
| dot_accuracy@5 | 0.965 |
| dot_accuracy@10 | 0.97 |
| dot_precision@1 | 0.805 |
| dot_precision@3 | 0.3083 |
| dot_precision@5 | 0.193 |
| dot_precision@10 | 0.097 |
| dot_recall@1 | 0.805 |
| dot_recall@3 | 0.925 |
| dot_recall@5 | 0.965 |
| dot_recall@10 | 0.97 |
| dot_ndcg@10 | 0.8921 |
| dot_mrr@10 | 0.8663 |
| dot_map@100 | 0.868 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 800 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 800 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 20.1 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 127.42 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What groups are involved in the processes that require cooperation and collaboration?</code> | <code>processes require the cooperation of and collaboration among industry, civil society, researchers, policymakers, <br>technologists, and the public. <br>14</code> |
| <code>Why is collaboration among different sectors important in these processes?</code> | <code>processes require the cooperation of and collaboration among industry, civil society, researchers, policymakers, <br>technologists, and the public. <br>14</code> |
| <code>What did the panelists emphasize regarding the regulation of technology before it is built and instituted?</code> | <code>(before the technology is built and instituted). Various panelists also emphasized the importance of regulation <br>that includes limits to the type and cost of such technologies. <br>56</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:-----:|:----:|:--------------:|
| 1.0 | 40 | 0.8449 |
| 1.25 | 50 | 0.8586 |
| 2.0 | 80 | 0.8693 |
| 2.5 | 100 | 0.8702 |
| 3.0 | 120 | 0.8703 |
| 3.75 | 150 | 0.8715 |
| 4.0 | 160 | 0.8659 |
| 5.0 | 200 | 0.8680 |
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |