import math import time import torch import torch.nn as nn import transformers from .quant import * DEBUG = False torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False class GPTQ: def __init__(self, layer): self.layer = layer self.dev = self.layer.weight.device W = layer.weight.data.clone() if isinstance(self.layer, nn.Conv2d): W = W.flatten(1) if isinstance(self.layer, transformers.Conv1D): W = W.t() self.rows = W.shape[0] self.columns = W.shape[1] self.H = torch.zeros((self.columns, self.columns), device=self.dev) self.nsamples = 0 def add_batch(self, inp, out): if DEBUG: self.inp1 = inp self.out1 = out if len(inp.shape) == 2: inp = inp.unsqueeze(0) tmp = inp.shape[0] if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D): if len(inp.shape) == 3: inp = inp.reshape((-1, inp.shape[-1])) inp = inp.t() if isinstance(self.layer, nn.Conv2d): unfold = nn.Unfold( self.layer.kernel_size, dilation=self.layer.dilation, padding=self.layer.padding, stride=self.layer.stride ) inp = unfold(inp) inp = inp.permute([1, 0, 2]) inp = inp.flatten(1) self.H *= self.nsamples / (self.nsamples + tmp) self.nsamples += tmp # inp = inp.float() inp = math.sqrt(2 / self.nsamples) * inp.float() # self.H += 2 / self.nsamples * inp.matmul(inp.t()) self.H += inp.matmul(inp.t()) def fasterquant( self, blocksize=128, percdamp=.01, groupsize=-1 ): W = self.layer.weight.data.clone() if isinstance(self.layer, nn.Conv2d): W = W.flatten(1) if isinstance(self.layer, transformers.Conv1D): W = W.t() W = W.float() tick = time.time() if not self.quantizer.ready(): self.quantizer.find_params(W, weight=True) H = self.H del self.H dead = torch.diag(H) == 0 H[dead, dead] = 1 W[:, dead] = 0 Losses = torch.zeros_like(W) Q = torch.zeros_like(W) damp = percdamp * torch.mean(torch.diag(H)) diag = torch.arange(self.columns, device=self.dev) H[diag, diag] += damp H = torch.linalg.cholesky(H) H = torch.cholesky_inverse(H) H = torch.linalg.cholesky(H, upper=True) Hinv = H scale = [] zero = [] now_idx = 1 for i1 in range(0, self.columns, blocksize): i2 = min(i1 + blocksize, self.columns) count = i2 - i1 W1 = W[:, i1:i2].clone() Q1 = torch.zeros_like(W1) Err1 = torch.zeros_like(W1) Losses1 = torch.zeros_like(W1) Hinv1 = Hinv[i1:i2, i1:i2] for i in range(count): w = W1[:, i] d = Hinv1[i, i] if groupsize != -1: if (i1 + i) % groupsize == 0: self.quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True) if ((i1 + i) // groupsize) - now_idx == -1: scale.append(self.quantizer.scale) zero.append(self.quantizer.zero) now_idx += 1 q = quantize( w.unsqueeze(1), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq ).flatten() Q1[:, i] = q Losses1[:, i] = (w - q) ** 2 / d ** 2 err1 = (w - q) / d W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) Err1[:, i] = err1 Q[:, i1:i2] = Q1 Losses[:, i1:i2] = Losses1 / 2 W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) if DEBUG: self.layer.weight.data[:, :i2] = Q[:, :i2] self.layer.weight.data[:, i2:] = W[:, i2:] print(torch.sum((self.layer(self.inp1) - self.out1) ** 2)) print(torch.sum(Losses)) torch.cuda.synchronize() print('time %.2f' % (time.time() - tick)) print('error', torch.sum(Losses).item()) if isinstance(self.layer, transformers.Conv1D): Q = Q.t() self.layer.weight.data = Q.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype) if DEBUG: print(torch.sum((self.layer(self.inp1) - self.out1) ** 2)) if scale == []: scale.append(self.quantizer.scale) zero.append(self.quantizer.zero) scale = torch.cat(scale,dim=1) zero = torch.cat(zero,dim=1) return scale,zero def free(self): if DEBUG: self.inp1 = None self.out1 = None self.H = None self.Losses = None self.Trace = None torch.cuda.empty_cache()