File size: 1,900 Bytes
0015d41
 
 
 
 
 
 
 
3e0df6e
 
0015d41
 
 
 
 
 
 
 
bbd8cf9
0015d41
 
3e0df6e
 
 
0015d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0df6e
 
 
 
 
 
 
 
 
 
 
0015d41
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: afl-3.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: Viet-Mistral/Vistral-7B-Chat
datasets:
- generator
model-index:
- name: vietnamese-news-summarization-vistral-7b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/tritran/vietnamese-news-summarization/runs/as3mgbsl)
# vietnamese-news-summarization-vistral-7b

This model is a fine-tuned version of [Viet-Mistral/Vistral-7B-Chat](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2452

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 100

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3699        | 0.0060 | 20   | 1.3159          |
| 1.4501        | 0.0119 | 40   | 1.2761          |
| 1.2554        | 0.0179 | 60   | 1.2583          |
| 1.1901        | 0.0239 | 80   | 1.2474          |
| 1.4126        | 0.0298 | 100  | 1.2452          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.1.2
- Datasets 2.16.0
- Tokenizers 0.19.1