chqmatteo commited on
Commit
cff6eaa
1 Parent(s): bf3a229

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.34 +/- 1.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:672db11155e2be134dc2e868a15bed8f9dbdee237085f988b524e2e509aef258
3
+ size 108090
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39cb178b80>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f39cb179ac0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1673989544018054116,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtrnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAua8AP0lUtj+4/NY9HYq7v4hvVr/TBS2/5iAVv8aINL7QJn69Ez3UvySJpT9UgsI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]]",
60
+ "desired_goal": "[[ 0.5026813 1.4244472 0.10497421]\n [-1.4651524 -0.83763933 -0.6758701 ]\n [-0.58253324 -0.176303 -0.06204873]\n [-1.6581138 1.2932477 1.5196023 ]]",
61
+ "observation": "[[0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQW7Svdugrj19v3M+rVX4PYeUXb3XGLQ94xIBvjtpbD0UZEs99/+dvTy40b2dX5M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.10274936 0.08526774 0.23803516]\n [ 0.12125716 -0.05409672 0.087938 ]\n [-0.12604861 0.05771754 0.04965599]\n [-0.07714837 -0.10240218 0.01798993]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcFzGTQ3UBsCUhpRSlIwBbJRLMowBdJRHQKBEoieNDMN1fZQoaAZoCWgPQwjVd35Rgj4SwJSGlFKUaBVLMmgWR0CgREzH80k4dX2UKGgGaAloD0MIchb2tMN/EsCUhpRSlGgVSzJoFkdAoEPdq59Vm3V9lChoBmgJaA9DCEFmZ9E7dQrAlIaUUpRoFUsyaBZHQKBDcom5UcZ1fZQoaAZoCWgPQwhn1lJA2k8QwJSGlFKUaBVLMmgWR0CgRXBIWgvldX2UKGgGaAloD0MItrxyvW2mDsCUhpRSlGgVSzJoFkdAoEUbJU5uInV9lChoBmgJaA9DCGCvsOB+YA3AlIaUUpRoFUsyaBZHQKBErAdGRV91fZQoaAZoCWgPQwiutmJ/2V0OwJSGlFKUaBVLMmgWR0CgRECrcTJydX2UKGgGaAloD0MI0JuKVBjbBMCUhpRSlGgVSzJoFkdAoEZEHhS9/XV9lChoBmgJaA9DCJrpXif1JRLAlIaUUpRoFUsyaBZHQKBF7rZamoB1fZQoaAZoCWgPQwhj7ISX4DQVwJSGlFKUaBVLMmgWR0CgRX+yRjjJdX2UKGgGaAloD0MIkga3tYWHA8CUhpRSlGgVSzJoFkdAoEUUiUxEfHV9lChoBmgJaA9DCC4DzlKyvA/AlIaUUpRoFUsyaBZHQKBHEdmQKa51fZQoaAZoCWgPQwjzVfKxuzAXwJSGlFKUaBVLMmgWR0CgRryhi9ZidX2UKGgGaAloD0MImkF8YMf/CcCUhpRSlGgVSzJoFkdAoEZNrGipN3V9lChoBmgJaA9DCHB6F+/HbQnAlIaUUpRoFUsyaBZHQKBF4nm7rcF1fZQoaAZoCWgPQwgc0xOWeIAIwJSGlFKUaBVLMmgWR0CgR9r3K0UodX2UKGgGaAloD0MIT64pkNm5BsCUhpRSlGgVSzJoFkdAoEeFjoZAIXV9lChoBmgJaA9DCKnb2VcepA7AlIaUUpRoFUsyaBZHQKBHFqAz5451fZQoaAZoCWgPQwgF3smnxxYIwJSGlFKUaBVLMmgWR0CgRqtxEORUdX2UKGgGaAloD0MI9fV8zXLZCcCUhpRSlGgVSzJoFkdAoEib1h9b5nV9lChoBmgJaA9DCGyvBb03JhXAlIaUUpRoFUsyaBZHQKBIRqtYB/91fZQoaAZoCWgPQwhtq1lnfH8JwJSGlFKUaBVLMmgWR0CgR9erMkhSdX2UKGgGaAloD0MI6Etvfy5aCsCUhpRSlGgVSzJoFkdAoEdsdeY2KnV9lChoBmgJaA9DCP5IERlW0QrAlIaUUpRoFUsyaBZHQKBJbI2fkFR1fZQoaAZoCWgPQwie8BKc+qAMwJSGlFKUaBVLMmgWR0CgSRc2itaIdX2UKGgGaAloD0MIxmzJqgh3DMCUhpRSlGgVSzJoFkdAoEioK4QSSXV9lChoBmgJaA9DCBA//z14rRbAlIaUUpRoFUsyaBZHQKBIPNahYeV1fZQoaAZoCWgPQwhEboYb8JkFwJSGlFKUaBVLMmgWR0CgSjVsk6cRdX2UKGgGaAloD0MIYW9iSE6GE8CUhpRSlGgVSzJoFkdAoEngCuEEknV9lChoBmgJaA9DCFZ9rrZi3wfAlIaUUpRoFUsyaBZHQKBJcOfdykt1fZQoaAZoCWgPQwhAMEeP39sEwJSGlFKUaBVLMmgWR0CgSQWRigCfdX2UKGgGaAloD0MIEATI0LFDA8CUhpRSlGgVSzJoFkdAoEr9uLrHEXV9lChoBmgJaA9DCELqdvaVRw/AlIaUUpRoFUsyaBZHQKBKqIk7fYV1fZQoaAZoCWgPQwj0UNuGUXAIwJSGlFKUaBVLMmgWR0CgSjll9SdfdX2UKGgGaAloD0MILh7ec2CZEcCUhpRSlGgVSzJoFkdAoEnOOwPiDXV9lChoBmgJaA9DCAKEDyVa8g3AlIaUUpRoFUsyaBZHQKBLy/47A+J1fZQoaAZoCWgPQwjACYUIOMQHwJSGlFKUaBVLMmgWR0CgS3bQ9ic5dX2UKGgGaAloD0MIFlCop4/ABsCUhpRSlGgVSzJoFkdAoEsHuPV/c3V9lChoBmgJaA9DCJARUOEI8gHAlIaUUpRoFUsyaBZHQKBKnGXokiV1fZQoaAZoCWgPQwgjFFtB07IGwJSGlFKUaBVLMmgWR0CgTJRpcophdX2UKGgGaAloD0MICTTY1Hk0BcCUhpRSlGgVSzJoFkdAoEw/AM2FWXV9lChoBmgJaA9DCBUdyeU/hAbAlIaUUpRoFUsyaBZHQKBL0ACGN711fZQoaAZoCWgPQwi3J0hsd68IwJSGlFKUaBVLMmgWR0CgS2TLW7OFdX2UKGgGaAloD0MIRgpl4evrB8CUhpRSlGgVSzJoFkdAoE1fbqQiinV9lChoBmgJaA9DCLKEtTF2ghDAlIaUUpRoFUsyaBZHQKBNCiTt9hJ1fZQoaAZoCWgPQwg/An/4+R8RwJSGlFKUaBVLMmgWR0CgTJsEJSiudX2UKGgGaAloD0MI38FPHEAPEMCUhpRSlGgVSzJoFkdAoEwv1e0G/3V9lChoBmgJaA9DCKFns+pzpRLAlIaUUpRoFUsyaBZHQKBOIwTufEp1fZQoaAZoCWgPQwguPC8VGzMGwJSGlFKUaBVLMmgWR0CgTc2i1y/9dX2UKGgGaAloD0MIaXQHsTOlEsCUhpRSlGgVSzJoFkdAoE1egUUO/nV9lChoBmgJaA9DCMrC19e6NATAlIaUUpRoFUsyaBZHQKBM8zposZp1fZQoaAZoCWgPQwgFiljEsGMZwJSGlFKUaBVLMmgWR0CgTuquSwGGdX2UKGgGaAloD0MIv9cQHJcRC8CUhpRSlGgVSzJoFkdAoE6VW8yvcXV9lChoBmgJaA9DCNVd2QWDywLAlIaUUpRoFUsyaBZHQKBOJjo6jnF1fZQoaAZoCWgPQwgNx/MZUG8IwJSGlFKUaBVLMmgWR0CgTbruYx+KdX2UKGgGaAloD0MI8IrgfysZCMCUhpRSlGgVSzJoFkdAoE+s/QjUu3V9lChoBmgJaA9DCI6R7BFq9hTAlIaUUpRoFUsyaBZHQKBPV62OQyR1fZQoaAZoCWgPQwjePUD35UwLwJSGlFKUaBVLMmgWR0CgTuiJwbVCdX2UKGgGaAloD0MI/Uy9bhH4BsCUhpRSlGgVSzJoFkdAoE59LpRoAXV9lChoBmgJaA9DCAWlaOVe4AzAlIaUUpRoFUsyaBZHQKBQcxYaHbh1fZQoaAZoCWgPQwiwA+eMKA0HwJSGlFKUaBVLMmgWR0CgUB25Yoy9dX2UKGgGaAloD0MINBE2PL3iEMCUhpRSlGgVSzJoFkdAoE+u1lXii3V9lChoBmgJaA9DCOzctBmncRLAlIaUUpRoFUsyaBZHQKBPQ6J66at1fZQoaAZoCWgPQwihgO1gxF4GwJSGlFKUaBVLMmgWR0CgUT4TsY2sdX2UKGgGaAloD0MIV7CNeLLbCsCUhpRSlGgVSzJoFkdAoFDoyoGY8nV9lChoBmgJaA9DCGSxTSoaqwbAlIaUUpRoFUsyaBZHQKBQeazeGfx1fZQoaAZoCWgPQwjmBG1y+AQKwJSGlFKUaBVLMmgWR0CgUA5TyauwdX2UKGgGaAloD0MI/7ClR1NdA8CUhpRSlGgVSzJoFkdAoFITXYlIE3V9lChoBmgJaA9DCD7ONGH7SQfAlIaUUpRoFUsyaBZHQKBRvjoZAIJ1fZQoaAZoCWgPQwjVBieiX/sMwJSGlFKUaBVLMmgWR0CgUU8baRISdX2UKGgGaAloD0MI6s4Tz9lCBMCUhpRSlGgVSzJoFkdAoFDjxoZhrnV9lChoBmgJaA9DCHEDPj+MMA7AlIaUUpRoFUsyaBZHQKBS4CGN70F1fZQoaAZoCWgPQwgydVd2waAMwJSGlFKUaBVLMmgWR0CgUorAgxJvdX2UKGgGaAloD0MIG/UQje5ADcCUhpRSlGgVSzJoFkdAoFIbye7L+3V9lChoBmgJaA9DCH0geedQRgbAlIaUUpRoFUsyaBZHQKBRsHBUJfJ1fZQoaAZoCWgPQwgAyXTo9DwKwJSGlFKUaBVLMmgWR0CgU6tQKrq/dX2UKGgGaAloD0MIHv6arFHvE8CUhpRSlGgVSzJoFkdAoFNWEkB0ZHV9lChoBmgJaA9DCFopBHKJ4wbAlIaUUpRoFUsyaBZHQKBS5vAoG6h1fZQoaAZoCWgPQwgTtp+M8UEKwJSGlFKUaBVLMmgWR0CgUnunl4kedX2UKGgGaAloD0MItqFinL+pCsCUhpRSlGgVSzJoFkdAoFRvbVSXMXV9lChoBmgJaA9DCHxD4bN1UBbAlIaUUpRoFUsyaBZHQKBUGjW07bN1fZQoaAZoCWgPQwg1lxsMdSgewJSGlFKUaBVLMmgWR0CgU6sU7CBPdX2UKGgGaAloD0MIZCDPLt9aFcCUhpRSlGgVSzJoFkdAoFM/0h/y5XV9lChoBmgJaA9DCMRBQpQvyAvAlIaUUpRoFUsyaBZHQKBVOfwI+nt1fZQoaAZoCWgPQwiERrBx/bsJwJSGlFKUaBVLMmgWR0CgVOSaVlf7dX2UKGgGaAloD0MIgSTs20lEDMCUhpRSlGgVSzJoFkdAoFR1fqoqC3V9lChoBmgJaA9DCExw6gPJGxHAlIaUUpRoFUsyaBZHQKBUCkHD7651fZQoaAZoCWgPQwhXdyy2SUUFwJSGlFKUaBVLMmgWR0CgVgHq/ub7dX2UKGgGaAloD0MI+z2xTpVvBsCUhpRSlGgVSzJoFkdAoFWsqSX+l3V9lChoBmgJaA9DCCAJ+3YS4RDAlIaUUpRoFUsyaBZHQKBVPY/3WWh1fZQoaAZoCWgPQwjW5v9VR04GwJSGlFKUaBVLMmgWR0CgVNI8p1A8dX2UKGgGaAloD0MI8S2sG++uDcCUhpRSlGgVSzJoFkdAoFa98w5/9nV9lChoBmgJaA9DCM5PcRx4hRfAlIaUUpRoFUsyaBZHQKBWaJIDoyN1fZQoaAZoCWgPQwhO7QxTW5oRwJSGlFKUaBVLMmgWR0CgVflzuF6BdX2UKGgGaAloD0MITRWMSup0F8CUhpRSlGgVSzJoFkdAoFWOIdlunHV9lChoBmgJaA9DCACsjhzprAzAlIaUUpRoFUsyaBZHQKBXgK9f1Hx1fZQoaAZoCWgPQwg4LXjRVxAMwJSGlFKUaBVLMmgWR0CgVytk4FRpdX2UKGgGaAloD0MIuXAgJAsYE8CUhpRSlGgVSzJoFkdAoFa8TL4etHV9lChoBmgJaA9DCFNdwMsMixHAlIaUUpRoFUsyaBZHQKBWUPyTY/V1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6558870ae2c115b6f9f0f7293d4e33e0db61ca6da8e6f23d9726bf4a1779ab9
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:756c414e91892f8b095e94498137a99d82dd82971c00b63436d5e2fcaab30f1e
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
2
+ - Python: 3.9.15
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39cb178b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39cb179ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673989544018054116, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtrnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAua8AP0lUtj+4/NY9HYq7v4hvVr/TBS2/5iAVv8aINL7QJn69Ez3UvySJpT9UgsI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]]", "desired_goal": "[[ 0.5026813 1.4244472 0.10497421]\n [-1.4651524 -0.83763933 -0.6758701 ]\n [-0.58253324 -0.176303 -0.06204873]\n [-1.6581138 1.2932477 1.5196023 ]]", "observation": "[[0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQW7Svdugrj19v3M+rVX4PYeUXb3XGLQ94xIBvjtpbD0UZEs99/+dvTy40b2dX5M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10274936 0.08526774 0.23803516]\n [ 0.12125716 -0.05409672 0.087938 ]\n [-0.12604861 0.05771754 0.04965599]\n [-0.07714837 -0.10240218 0.01798993]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcFzGTQ3UBsCUhpRSlIwBbJRLMowBdJRHQKBEoieNDMN1fZQoaAZoCWgPQwjVd35Rgj4SwJSGlFKUaBVLMmgWR0CgREzH80k4dX2UKGgGaAloD0MIchb2tMN/EsCUhpRSlGgVSzJoFkdAoEPdq59Vm3V9lChoBmgJaA9DCEFmZ9E7dQrAlIaUUpRoFUsyaBZHQKBDcom5UcZ1fZQoaAZoCWgPQwhn1lJA2k8QwJSGlFKUaBVLMmgWR0CgRXBIWgvldX2UKGgGaAloD0MItrxyvW2mDsCUhpRSlGgVSzJoFkdAoEUbJU5uInV9lChoBmgJaA9DCGCvsOB+YA3AlIaUUpRoFUsyaBZHQKBErAdGRV91fZQoaAZoCWgPQwiutmJ/2V0OwJSGlFKUaBVLMmgWR0CgRECrcTJydX2UKGgGaAloD0MI0JuKVBjbBMCUhpRSlGgVSzJoFkdAoEZEHhS9/XV9lChoBmgJaA9DCJrpXif1JRLAlIaUUpRoFUsyaBZHQKBF7rZamoB1fZQoaAZoCWgPQwhj7ISX4DQVwJSGlFKUaBVLMmgWR0CgRX+yRjjJdX2UKGgGaAloD0MIkga3tYWHA8CUhpRSlGgVSzJoFkdAoEUUiUxEfHV9lChoBmgJaA9DCC4DzlKyvA/AlIaUUpRoFUsyaBZHQKBHEdmQKa51fZQoaAZoCWgPQwjzVfKxuzAXwJSGlFKUaBVLMmgWR0CgRryhi9ZidX2UKGgGaAloD0MImkF8YMf/CcCUhpRSlGgVSzJoFkdAoEZNrGipN3V9lChoBmgJaA9DCHB6F+/HbQnAlIaUUpRoFUsyaBZHQKBF4nm7rcF1fZQoaAZoCWgPQwgc0xOWeIAIwJSGlFKUaBVLMmgWR0CgR9r3K0UodX2UKGgGaAloD0MIT64pkNm5BsCUhpRSlGgVSzJoFkdAoEeFjoZAIXV9lChoBmgJaA9DCKnb2VcepA7AlIaUUpRoFUsyaBZHQKBHFqAz5451fZQoaAZoCWgPQwgF3smnxxYIwJSGlFKUaBVLMmgWR0CgRqtxEORUdX2UKGgGaAloD0MI9fV8zXLZCcCUhpRSlGgVSzJoFkdAoEib1h9b5nV9lChoBmgJaA9DCGyvBb03JhXAlIaUUpRoFUsyaBZHQKBIRqtYB/91fZQoaAZoCWgPQwhtq1lnfH8JwJSGlFKUaBVLMmgWR0CgR9erMkhSdX2UKGgGaAloD0MI6Etvfy5aCsCUhpRSlGgVSzJoFkdAoEdsdeY2KnV9lChoBmgJaA9DCP5IERlW0QrAlIaUUpRoFUsyaBZHQKBJbI2fkFR1fZQoaAZoCWgPQwie8BKc+qAMwJSGlFKUaBVLMmgWR0CgSRc2itaIdX2UKGgGaAloD0MIxmzJqgh3DMCUhpRSlGgVSzJoFkdAoEioK4QSSXV9lChoBmgJaA9DCBA//z14rRbAlIaUUpRoFUsyaBZHQKBIPNahYeV1fZQoaAZoCWgPQwhEboYb8JkFwJSGlFKUaBVLMmgWR0CgSjVsk6cRdX2UKGgGaAloD0MIYW9iSE6GE8CUhpRSlGgVSzJoFkdAoEngCuEEknV9lChoBmgJaA9DCFZ9rrZi3wfAlIaUUpRoFUsyaBZHQKBJcOfdykt1fZQoaAZoCWgPQwhAMEeP39sEwJSGlFKUaBVLMmgWR0CgSQWRigCfdX2UKGgGaAloD0MIEATI0LFDA8CUhpRSlGgVSzJoFkdAoEr9uLrHEXV9lChoBmgJaA9DCELqdvaVRw/AlIaUUpRoFUsyaBZHQKBKqIk7fYV1fZQoaAZoCWgPQwj0UNuGUXAIwJSGlFKUaBVLMmgWR0CgSjll9SdfdX2UKGgGaAloD0MILh7ec2CZEcCUhpRSlGgVSzJoFkdAoEnOOwPiDXV9lChoBmgJaA9DCAKEDyVa8g3AlIaUUpRoFUsyaBZHQKBLy/47A+J1fZQoaAZoCWgPQwjACYUIOMQHwJSGlFKUaBVLMmgWR0CgS3bQ9ic5dX2UKGgGaAloD0MIFlCop4/ABsCUhpRSlGgVSzJoFkdAoEsHuPV/c3V9lChoBmgJaA9DCJARUOEI8gHAlIaUUpRoFUsyaBZHQKBKnGXokiV1fZQoaAZoCWgPQwgjFFtB07IGwJSGlFKUaBVLMmgWR0CgTJRpcophdX2UKGgGaAloD0MICTTY1Hk0BcCUhpRSlGgVSzJoFkdAoEw/AM2FWXV9lChoBmgJaA9DCBUdyeU/hAbAlIaUUpRoFUsyaBZHQKBL0ACGN711fZQoaAZoCWgPQwi3J0hsd68IwJSGlFKUaBVLMmgWR0CgS2TLW7OFdX2UKGgGaAloD0MIRgpl4evrB8CUhpRSlGgVSzJoFkdAoE1fbqQiinV9lChoBmgJaA9DCLKEtTF2ghDAlIaUUpRoFUsyaBZHQKBNCiTt9hJ1fZQoaAZoCWgPQwg/An/4+R8RwJSGlFKUaBVLMmgWR0CgTJsEJSiudX2UKGgGaAloD0MI38FPHEAPEMCUhpRSlGgVSzJoFkdAoEwv1e0G/3V9lChoBmgJaA9DCKFns+pzpRLAlIaUUpRoFUsyaBZHQKBOIwTufEp1fZQoaAZoCWgPQwguPC8VGzMGwJSGlFKUaBVLMmgWR0CgTc2i1y/9dX2UKGgGaAloD0MIaXQHsTOlEsCUhpRSlGgVSzJoFkdAoE1egUUO/nV9lChoBmgJaA9DCMrC19e6NATAlIaUUpRoFUsyaBZHQKBM8zposZp1fZQoaAZoCWgPQwgFiljEsGMZwJSGlFKUaBVLMmgWR0CgTuquSwGGdX2UKGgGaAloD0MIv9cQHJcRC8CUhpRSlGgVSzJoFkdAoE6VW8yvcXV9lChoBmgJaA9DCNVd2QWDywLAlIaUUpRoFUsyaBZHQKBOJjo6jnF1fZQoaAZoCWgPQwgNx/MZUG8IwJSGlFKUaBVLMmgWR0CgTbruYx+KdX2UKGgGaAloD0MI8IrgfysZCMCUhpRSlGgVSzJoFkdAoE+s/QjUu3V9lChoBmgJaA9DCI6R7BFq9hTAlIaUUpRoFUsyaBZHQKBPV62OQyR1fZQoaAZoCWgPQwjePUD35UwLwJSGlFKUaBVLMmgWR0CgTuiJwbVCdX2UKGgGaAloD0MI/Uy9bhH4BsCUhpRSlGgVSzJoFkdAoE59LpRoAXV9lChoBmgJaA9DCAWlaOVe4AzAlIaUUpRoFUsyaBZHQKBQcxYaHbh1fZQoaAZoCWgPQwiwA+eMKA0HwJSGlFKUaBVLMmgWR0CgUB25Yoy9dX2UKGgGaAloD0MINBE2PL3iEMCUhpRSlGgVSzJoFkdAoE+u1lXii3V9lChoBmgJaA9DCOzctBmncRLAlIaUUpRoFUsyaBZHQKBPQ6J66at1fZQoaAZoCWgPQwihgO1gxF4GwJSGlFKUaBVLMmgWR0CgUT4TsY2sdX2UKGgGaAloD0MIV7CNeLLbCsCUhpRSlGgVSzJoFkdAoFDoyoGY8nV9lChoBmgJaA9DCGSxTSoaqwbAlIaUUpRoFUsyaBZHQKBQeazeGfx1fZQoaAZoCWgPQwjmBG1y+AQKwJSGlFKUaBVLMmgWR0CgUA5TyauwdX2UKGgGaAloD0MI/7ClR1NdA8CUhpRSlGgVSzJoFkdAoFITXYlIE3V9lChoBmgJaA9DCD7ONGH7SQfAlIaUUpRoFUsyaBZHQKBRvjoZAIJ1fZQoaAZoCWgPQwjVBieiX/sMwJSGlFKUaBVLMmgWR0CgUU8baRISdX2UKGgGaAloD0MI6s4Tz9lCBMCUhpRSlGgVSzJoFkdAoFDjxoZhrnV9lChoBmgJaA9DCHEDPj+MMA7AlIaUUpRoFUsyaBZHQKBS4CGN70F1fZQoaAZoCWgPQwgydVd2waAMwJSGlFKUaBVLMmgWR0CgUorAgxJvdX2UKGgGaAloD0MIG/UQje5ADcCUhpRSlGgVSzJoFkdAoFIbye7L+3V9lChoBmgJaA9DCH0geedQRgbAlIaUUpRoFUsyaBZHQKBRsHBUJfJ1fZQoaAZoCWgPQwgAyXTo9DwKwJSGlFKUaBVLMmgWR0CgU6tQKrq/dX2UKGgGaAloD0MIHv6arFHvE8CUhpRSlGgVSzJoFkdAoFNWEkB0ZHV9lChoBmgJaA9DCFopBHKJ4wbAlIaUUpRoFUsyaBZHQKBS5vAoG6h1fZQoaAZoCWgPQwgTtp+M8UEKwJSGlFKUaBVLMmgWR0CgUnunl4kedX2UKGgGaAloD0MItqFinL+pCsCUhpRSlGgVSzJoFkdAoFRvbVSXMXV9lChoBmgJaA9DCHxD4bN1UBbAlIaUUpRoFUsyaBZHQKBUGjW07bN1fZQoaAZoCWgPQwg1lxsMdSgewJSGlFKUaBVLMmgWR0CgU6sU7CBPdX2UKGgGaAloD0MIZCDPLt9aFcCUhpRSlGgVSzJoFkdAoFM/0h/y5XV9lChoBmgJaA9DCMRBQpQvyAvAlIaUUpRoFUsyaBZHQKBVOfwI+nt1fZQoaAZoCWgPQwiERrBx/bsJwJSGlFKUaBVLMmgWR0CgVOSaVlf7dX2UKGgGaAloD0MIgSTs20lEDMCUhpRSlGgVSzJoFkdAoFR1fqoqC3V9lChoBmgJaA9DCExw6gPJGxHAlIaUUpRoFUsyaBZHQKBUCkHD7651fZQoaAZoCWgPQwhXdyy2SUUFwJSGlFKUaBVLMmgWR0CgVgHq/ub7dX2UKGgGaAloD0MI+z2xTpVvBsCUhpRSlGgVSzJoFkdAoFWsqSX+l3V9lChoBmgJaA9DCCAJ+3YS4RDAlIaUUpRoFUsyaBZHQKBVPY/3WWh1fZQoaAZoCWgPQwjW5v9VR04GwJSGlFKUaBVLMmgWR0CgVNI8p1A8dX2UKGgGaAloD0MI8S2sG++uDcCUhpRSlGgVSzJoFkdAoFa98w5/9nV9lChoBmgJaA9DCM5PcRx4hRfAlIaUUpRoFUsyaBZHQKBWaJIDoyN1fZQoaAZoCWgPQwhO7QxTW5oRwJSGlFKUaBVLMmgWR0CgVflzuF6BdX2UKGgGaAloD0MITRWMSup0F8CUhpRSlGgVSzJoFkdAoFWOIdlunHV9lChoBmgJaA9DCACsjhzprAzAlIaUUpRoFUsyaBZHQKBXgK9f1Hx1fZQoaAZoCWgPQwg4LXjRVxAMwJSGlFKUaBVLMmgWR0CgVytk4FRpdX2UKGgGaAloD0MIuXAgJAsYE8CUhpRSlGgVSzJoFkdAoFa8TL4etHV9lChoBmgJaA9DCFNdwMsMixHAlIaUUpRoFUsyaBZHQKBWUPyTY/V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.341207633819431, "std_reward": 1.557285032459058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T21:40:38.644798"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faeada946c55577623cff6f39757fa8a50180fa0bb7cc5e963224c072673c06a
3
+ size 3212