Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.34 +/- 1.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:672db11155e2be134dc2e868a15bed8f9dbdee237085f988b524e2e509aef258
|
3 |
+
size 108090
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39cb178b80>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f39cb179ac0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1673989544018054116,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtrnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAua8AP0lUtj+4/NY9HYq7v4hvVr/TBS2/5iAVv8aINL7QJn69Ez3UvySJpT9UgsI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]]",
|
60 |
+
"desired_goal": "[[ 0.5026813 1.4244472 0.10497421]\n [-1.4651524 -0.83763933 -0.6758701 ]\n [-0.58253324 -0.176303 -0.06204873]\n [-1.6581138 1.2932477 1.5196023 ]]",
|
61 |
+
"observation": "[[0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQW7Svdugrj19v3M+rVX4PYeUXb3XGLQ94xIBvjtpbD0UZEs99/+dvTy40b2dX5M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.10274936 0.08526774 0.23803516]\n [ 0.12125716 -0.05409672 0.087938 ]\n [-0.12604861 0.05771754 0.04965599]\n [-0.07714837 -0.10240218 0.01798993]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcFzGTQ3UBsCUhpRSlIwBbJRLMowBdJRHQKBEoieNDMN1fZQoaAZoCWgPQwjVd35Rgj4SwJSGlFKUaBVLMmgWR0CgREzH80k4dX2UKGgGaAloD0MIchb2tMN/EsCUhpRSlGgVSzJoFkdAoEPdq59Vm3V9lChoBmgJaA9DCEFmZ9E7dQrAlIaUUpRoFUsyaBZHQKBDcom5UcZ1fZQoaAZoCWgPQwhn1lJA2k8QwJSGlFKUaBVLMmgWR0CgRXBIWgvldX2UKGgGaAloD0MItrxyvW2mDsCUhpRSlGgVSzJoFkdAoEUbJU5uInV9lChoBmgJaA9DCGCvsOB+YA3AlIaUUpRoFUsyaBZHQKBErAdGRV91fZQoaAZoCWgPQwiutmJ/2V0OwJSGlFKUaBVLMmgWR0CgRECrcTJydX2UKGgGaAloD0MI0JuKVBjbBMCUhpRSlGgVSzJoFkdAoEZEHhS9/XV9lChoBmgJaA9DCJrpXif1JRLAlIaUUpRoFUsyaBZHQKBF7rZamoB1fZQoaAZoCWgPQwhj7ISX4DQVwJSGlFKUaBVLMmgWR0CgRX+yRjjJdX2UKGgGaAloD0MIkga3tYWHA8CUhpRSlGgVSzJoFkdAoEUUiUxEfHV9lChoBmgJaA9DCC4DzlKyvA/AlIaUUpRoFUsyaBZHQKBHEdmQKa51fZQoaAZoCWgPQwjzVfKxuzAXwJSGlFKUaBVLMmgWR0CgRryhi9ZidX2UKGgGaAloD0MImkF8YMf/CcCUhpRSlGgVSzJoFkdAoEZNrGipN3V9lChoBmgJaA9DCHB6F+/HbQnAlIaUUpRoFUsyaBZHQKBF4nm7rcF1fZQoaAZoCWgPQwgc0xOWeIAIwJSGlFKUaBVLMmgWR0CgR9r3K0UodX2UKGgGaAloD0MIT64pkNm5BsCUhpRSlGgVSzJoFkdAoEeFjoZAIXV9lChoBmgJaA9DCKnb2VcepA7AlIaUUpRoFUsyaBZHQKBHFqAz5451fZQoaAZoCWgPQwgF3smnxxYIwJSGlFKUaBVLMmgWR0CgRqtxEORUdX2UKGgGaAloD0MI9fV8zXLZCcCUhpRSlGgVSzJoFkdAoEib1h9b5nV9lChoBmgJaA9DCGyvBb03JhXAlIaUUpRoFUsyaBZHQKBIRqtYB/91fZQoaAZoCWgPQwhtq1lnfH8JwJSGlFKUaBVLMmgWR0CgR9erMkhSdX2UKGgGaAloD0MI6Etvfy5aCsCUhpRSlGgVSzJoFkdAoEdsdeY2KnV9lChoBmgJaA9DCP5IERlW0QrAlIaUUpRoFUsyaBZHQKBJbI2fkFR1fZQoaAZoCWgPQwie8BKc+qAMwJSGlFKUaBVLMmgWR0CgSRc2itaIdX2UKGgGaAloD0MIxmzJqgh3DMCUhpRSlGgVSzJoFkdAoEioK4QSSXV9lChoBmgJaA9DCBA//z14rRbAlIaUUpRoFUsyaBZHQKBIPNahYeV1fZQoaAZoCWgPQwhEboYb8JkFwJSGlFKUaBVLMmgWR0CgSjVsk6cRdX2UKGgGaAloD0MIYW9iSE6GE8CUhpRSlGgVSzJoFkdAoEngCuEEknV9lChoBmgJaA9DCFZ9rrZi3wfAlIaUUpRoFUsyaBZHQKBJcOfdykt1fZQoaAZoCWgPQwhAMEeP39sEwJSGlFKUaBVLMmgWR0CgSQWRigCfdX2UKGgGaAloD0MIEATI0LFDA8CUhpRSlGgVSzJoFkdAoEr9uLrHEXV9lChoBmgJaA9DCELqdvaVRw/AlIaUUpRoFUsyaBZHQKBKqIk7fYV1fZQoaAZoCWgPQwj0UNuGUXAIwJSGlFKUaBVLMmgWR0CgSjll9SdfdX2UKGgGaAloD0MILh7ec2CZEcCUhpRSlGgVSzJoFkdAoEnOOwPiDXV9lChoBmgJaA9DCAKEDyVa8g3AlIaUUpRoFUsyaBZHQKBLy/47A+J1fZQoaAZoCWgPQwjACYUIOMQHwJSGlFKUaBVLMmgWR0CgS3bQ9ic5dX2UKGgGaAloD0MIFlCop4/ABsCUhpRSlGgVSzJoFkdAoEsHuPV/c3V9lChoBmgJaA9DCJARUOEI8gHAlIaUUpRoFUsyaBZHQKBKnGXokiV1fZQoaAZoCWgPQwgjFFtB07IGwJSGlFKUaBVLMmgWR0CgTJRpcophdX2UKGgGaAloD0MICTTY1Hk0BcCUhpRSlGgVSzJoFkdAoEw/AM2FWXV9lChoBmgJaA9DCBUdyeU/hAbAlIaUUpRoFUsyaBZHQKBL0ACGN711fZQoaAZoCWgPQwi3J0hsd68IwJSGlFKUaBVLMmgWR0CgS2TLW7OFdX2UKGgGaAloD0MIRgpl4evrB8CUhpRSlGgVSzJoFkdAoE1fbqQiinV9lChoBmgJaA9DCLKEtTF2ghDAlIaUUpRoFUsyaBZHQKBNCiTt9hJ1fZQoaAZoCWgPQwg/An/4+R8RwJSGlFKUaBVLMmgWR0CgTJsEJSiudX2UKGgGaAloD0MI38FPHEAPEMCUhpRSlGgVSzJoFkdAoEwv1e0G/3V9lChoBmgJaA9DCKFns+pzpRLAlIaUUpRoFUsyaBZHQKBOIwTufEp1fZQoaAZoCWgPQwguPC8VGzMGwJSGlFKUaBVLMmgWR0CgTc2i1y/9dX2UKGgGaAloD0MIaXQHsTOlEsCUhpRSlGgVSzJoFkdAoE1egUUO/nV9lChoBmgJaA9DCMrC19e6NATAlIaUUpRoFUsyaBZHQKBM8zposZp1fZQoaAZoCWgPQwgFiljEsGMZwJSGlFKUaBVLMmgWR0CgTuquSwGGdX2UKGgGaAloD0MIv9cQHJcRC8CUhpRSlGgVSzJoFkdAoE6VW8yvcXV9lChoBmgJaA9DCNVd2QWDywLAlIaUUpRoFUsyaBZHQKBOJjo6jnF1fZQoaAZoCWgPQwgNx/MZUG8IwJSGlFKUaBVLMmgWR0CgTbruYx+KdX2UKGgGaAloD0MI8IrgfysZCMCUhpRSlGgVSzJoFkdAoE+s/QjUu3V9lChoBmgJaA9DCI6R7BFq9hTAlIaUUpRoFUsyaBZHQKBPV62OQyR1fZQoaAZoCWgPQwjePUD35UwLwJSGlFKUaBVLMmgWR0CgTuiJwbVCdX2UKGgGaAloD0MI/Uy9bhH4BsCUhpRSlGgVSzJoFkdAoE59LpRoAXV9lChoBmgJaA9DCAWlaOVe4AzAlIaUUpRoFUsyaBZHQKBQcxYaHbh1fZQoaAZoCWgPQwiwA+eMKA0HwJSGlFKUaBVLMmgWR0CgUB25Yoy9dX2UKGgGaAloD0MINBE2PL3iEMCUhpRSlGgVSzJoFkdAoE+u1lXii3V9lChoBmgJaA9DCOzctBmncRLAlIaUUpRoFUsyaBZHQKBPQ6J66at1fZQoaAZoCWgPQwihgO1gxF4GwJSGlFKUaBVLMmgWR0CgUT4TsY2sdX2UKGgGaAloD0MIV7CNeLLbCsCUhpRSlGgVSzJoFkdAoFDoyoGY8nV9lChoBmgJaA9DCGSxTSoaqwbAlIaUUpRoFUsyaBZHQKBQeazeGfx1fZQoaAZoCWgPQwjmBG1y+AQKwJSGlFKUaBVLMmgWR0CgUA5TyauwdX2UKGgGaAloD0MI/7ClR1NdA8CUhpRSlGgVSzJoFkdAoFITXYlIE3V9lChoBmgJaA9DCD7ONGH7SQfAlIaUUpRoFUsyaBZHQKBRvjoZAIJ1fZQoaAZoCWgPQwjVBieiX/sMwJSGlFKUaBVLMmgWR0CgUU8baRISdX2UKGgGaAloD0MI6s4Tz9lCBMCUhpRSlGgVSzJoFkdAoFDjxoZhrnV9lChoBmgJaA9DCHEDPj+MMA7AlIaUUpRoFUsyaBZHQKBS4CGN70F1fZQoaAZoCWgPQwgydVd2waAMwJSGlFKUaBVLMmgWR0CgUorAgxJvdX2UKGgGaAloD0MIG/UQje5ADcCUhpRSlGgVSzJoFkdAoFIbye7L+3V9lChoBmgJaA9DCH0geedQRgbAlIaUUpRoFUsyaBZHQKBRsHBUJfJ1fZQoaAZoCWgPQwgAyXTo9DwKwJSGlFKUaBVLMmgWR0CgU6tQKrq/dX2UKGgGaAloD0MIHv6arFHvE8CUhpRSlGgVSzJoFkdAoFNWEkB0ZHV9lChoBmgJaA9DCFopBHKJ4wbAlIaUUpRoFUsyaBZHQKBS5vAoG6h1fZQoaAZoCWgPQwgTtp+M8UEKwJSGlFKUaBVLMmgWR0CgUnunl4kedX2UKGgGaAloD0MItqFinL+pCsCUhpRSlGgVSzJoFkdAoFRvbVSXMXV9lChoBmgJaA9DCHxD4bN1UBbAlIaUUpRoFUsyaBZHQKBUGjW07bN1fZQoaAZoCWgPQwg1lxsMdSgewJSGlFKUaBVLMmgWR0CgU6sU7CBPdX2UKGgGaAloD0MIZCDPLt9aFcCUhpRSlGgVSzJoFkdAoFM/0h/y5XV9lChoBmgJaA9DCMRBQpQvyAvAlIaUUpRoFUsyaBZHQKBVOfwI+nt1fZQoaAZoCWgPQwiERrBx/bsJwJSGlFKUaBVLMmgWR0CgVOSaVlf7dX2UKGgGaAloD0MIgSTs20lEDMCUhpRSlGgVSzJoFkdAoFR1fqoqC3V9lChoBmgJaA9DCExw6gPJGxHAlIaUUpRoFUsyaBZHQKBUCkHD7651fZQoaAZoCWgPQwhXdyy2SUUFwJSGlFKUaBVLMmgWR0CgVgHq/ub7dX2UKGgGaAloD0MI+z2xTpVvBsCUhpRSlGgVSzJoFkdAoFWsqSX+l3V9lChoBmgJaA9DCCAJ+3YS4RDAlIaUUpRoFUsyaBZHQKBVPY/3WWh1fZQoaAZoCWgPQwjW5v9VR04GwJSGlFKUaBVLMmgWR0CgVNI8p1A8dX2UKGgGaAloD0MI8S2sG++uDcCUhpRSlGgVSzJoFkdAoFa98w5/9nV9lChoBmgJaA9DCM5PcRx4hRfAlIaUUpRoFUsyaBZHQKBWaJIDoyN1fZQoaAZoCWgPQwhO7QxTW5oRwJSGlFKUaBVLMmgWR0CgVflzuF6BdX2UKGgGaAloD0MITRWMSup0F8CUhpRSlGgVSzJoFkdAoFWOIdlunHV9lChoBmgJaA9DCACsjhzprAzAlIaUUpRoFUsyaBZHQKBXgK9f1Hx1fZQoaAZoCWgPQwg4LXjRVxAMwJSGlFKUaBVLMmgWR0CgVytk4FRpdX2UKGgGaAloD0MIuXAgJAsYE8CUhpRSlGgVSzJoFkdAoFa8TL4etHV9lChoBmgJaA9DCFNdwMsMixHAlIaUUpRoFUsyaBZHQKBWUPyTY/V1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6558870ae2c115b6f9f0f7293d4e33e0db61ca6da8e6f23d9726bf4a1779ab9
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:756c414e91892f8b095e94498137a99d82dd82971c00b63436d5e2fcaab30f1e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
|
2 |
+
- Python: 3.9.15
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39cb178b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39cb179ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673989544018054116, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtrnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+trnAPu8Ggjy47ec+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAua8AP0lUtj+4/NY9HYq7v4hvVr/TBS2/5iAVv8aINL7QJn69Ez3UvySJpT9UgsI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjy2ucA+7waCPLjt5z5w9lI8WXg5OsrDDjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]\n [0.37641686 0.01587245 0.45298553]]", "desired_goal": "[[ 0.5026813 1.4244472 0.10497421]\n [-1.4651524 -0.83763933 -0.6758701 ]\n [-0.58253324 -0.176303 -0.06204873]\n [-1.6581138 1.2932477 1.5196023 ]]", "observation": "[[0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]\n [0.37641686 0.01587245 0.45298553 0.01287614 0.00070751 0.00871367]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQW7Svdugrj19v3M+rVX4PYeUXb3XGLQ94xIBvjtpbD0UZEs99/+dvTy40b2dX5M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10274936 0.08526774 0.23803516]\n [ 0.12125716 -0.05409672 0.087938 ]\n [-0.12604861 0.05771754 0.04965599]\n [-0.07714837 -0.10240218 0.01798993]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcFzGTQ3UBsCUhpRSlIwBbJRLMowBdJRHQKBEoieNDMN1fZQoaAZoCWgPQwjVd35Rgj4SwJSGlFKUaBVLMmgWR0CgREzH80k4dX2UKGgGaAloD0MIchb2tMN/EsCUhpRSlGgVSzJoFkdAoEPdq59Vm3V9lChoBmgJaA9DCEFmZ9E7dQrAlIaUUpRoFUsyaBZHQKBDcom5UcZ1fZQoaAZoCWgPQwhn1lJA2k8QwJSGlFKUaBVLMmgWR0CgRXBIWgvldX2UKGgGaAloD0MItrxyvW2mDsCUhpRSlGgVSzJoFkdAoEUbJU5uInV9lChoBmgJaA9DCGCvsOB+YA3AlIaUUpRoFUsyaBZHQKBErAdGRV91fZQoaAZoCWgPQwiutmJ/2V0OwJSGlFKUaBVLMmgWR0CgRECrcTJydX2UKGgGaAloD0MI0JuKVBjbBMCUhpRSlGgVSzJoFkdAoEZEHhS9/XV9lChoBmgJaA9DCJrpXif1JRLAlIaUUpRoFUsyaBZHQKBF7rZamoB1fZQoaAZoCWgPQwhj7ISX4DQVwJSGlFKUaBVLMmgWR0CgRX+yRjjJdX2UKGgGaAloD0MIkga3tYWHA8CUhpRSlGgVSzJoFkdAoEUUiUxEfHV9lChoBmgJaA9DCC4DzlKyvA/AlIaUUpRoFUsyaBZHQKBHEdmQKa51fZQoaAZoCWgPQwjzVfKxuzAXwJSGlFKUaBVLMmgWR0CgRryhi9ZidX2UKGgGaAloD0MImkF8YMf/CcCUhpRSlGgVSzJoFkdAoEZNrGipN3V9lChoBmgJaA9DCHB6F+/HbQnAlIaUUpRoFUsyaBZHQKBF4nm7rcF1fZQoaAZoCWgPQwgc0xOWeIAIwJSGlFKUaBVLMmgWR0CgR9r3K0UodX2UKGgGaAloD0MIT64pkNm5BsCUhpRSlGgVSzJoFkdAoEeFjoZAIXV9lChoBmgJaA9DCKnb2VcepA7AlIaUUpRoFUsyaBZHQKBHFqAz5451fZQoaAZoCWgPQwgF3smnxxYIwJSGlFKUaBVLMmgWR0CgRqtxEORUdX2UKGgGaAloD0MI9fV8zXLZCcCUhpRSlGgVSzJoFkdAoEib1h9b5nV9lChoBmgJaA9DCGyvBb03JhXAlIaUUpRoFUsyaBZHQKBIRqtYB/91fZQoaAZoCWgPQwhtq1lnfH8JwJSGlFKUaBVLMmgWR0CgR9erMkhSdX2UKGgGaAloD0MI6Etvfy5aCsCUhpRSlGgVSzJoFkdAoEdsdeY2KnV9lChoBmgJaA9DCP5IERlW0QrAlIaUUpRoFUsyaBZHQKBJbI2fkFR1fZQoaAZoCWgPQwie8BKc+qAMwJSGlFKUaBVLMmgWR0CgSRc2itaIdX2UKGgGaAloD0MIxmzJqgh3DMCUhpRSlGgVSzJoFkdAoEioK4QSSXV9lChoBmgJaA9DCBA//z14rRbAlIaUUpRoFUsyaBZHQKBIPNahYeV1fZQoaAZoCWgPQwhEboYb8JkFwJSGlFKUaBVLMmgWR0CgSjVsk6cRdX2UKGgGaAloD0MIYW9iSE6GE8CUhpRSlGgVSzJoFkdAoEngCuEEknV9lChoBmgJaA9DCFZ9rrZi3wfAlIaUUpRoFUsyaBZHQKBJcOfdykt1fZQoaAZoCWgPQwhAMEeP39sEwJSGlFKUaBVLMmgWR0CgSQWRigCfdX2UKGgGaAloD0MIEATI0LFDA8CUhpRSlGgVSzJoFkdAoEr9uLrHEXV9lChoBmgJaA9DCELqdvaVRw/AlIaUUpRoFUsyaBZHQKBKqIk7fYV1fZQoaAZoCWgPQwj0UNuGUXAIwJSGlFKUaBVLMmgWR0CgSjll9SdfdX2UKGgGaAloD0MILh7ec2CZEcCUhpRSlGgVSzJoFkdAoEnOOwPiDXV9lChoBmgJaA9DCAKEDyVa8g3AlIaUUpRoFUsyaBZHQKBLy/47A+J1fZQoaAZoCWgPQwjACYUIOMQHwJSGlFKUaBVLMmgWR0CgS3bQ9ic5dX2UKGgGaAloD0MIFlCop4/ABsCUhpRSlGgVSzJoFkdAoEsHuPV/c3V9lChoBmgJaA9DCJARUOEI8gHAlIaUUpRoFUsyaBZHQKBKnGXokiV1fZQoaAZoCWgPQwgjFFtB07IGwJSGlFKUaBVLMmgWR0CgTJRpcophdX2UKGgGaAloD0MICTTY1Hk0BcCUhpRSlGgVSzJoFkdAoEw/AM2FWXV9lChoBmgJaA9DCBUdyeU/hAbAlIaUUpRoFUsyaBZHQKBL0ACGN711fZQoaAZoCWgPQwi3J0hsd68IwJSGlFKUaBVLMmgWR0CgS2TLW7OFdX2UKGgGaAloD0MIRgpl4evrB8CUhpRSlGgVSzJoFkdAoE1fbqQiinV9lChoBmgJaA9DCLKEtTF2ghDAlIaUUpRoFUsyaBZHQKBNCiTt9hJ1fZQoaAZoCWgPQwg/An/4+R8RwJSGlFKUaBVLMmgWR0CgTJsEJSiudX2UKGgGaAloD0MI38FPHEAPEMCUhpRSlGgVSzJoFkdAoEwv1e0G/3V9lChoBmgJaA9DCKFns+pzpRLAlIaUUpRoFUsyaBZHQKBOIwTufEp1fZQoaAZoCWgPQwguPC8VGzMGwJSGlFKUaBVLMmgWR0CgTc2i1y/9dX2UKGgGaAloD0MIaXQHsTOlEsCUhpRSlGgVSzJoFkdAoE1egUUO/nV9lChoBmgJaA9DCMrC19e6NATAlIaUUpRoFUsyaBZHQKBM8zposZp1fZQoaAZoCWgPQwgFiljEsGMZwJSGlFKUaBVLMmgWR0CgTuquSwGGdX2UKGgGaAloD0MIv9cQHJcRC8CUhpRSlGgVSzJoFkdAoE6VW8yvcXV9lChoBmgJaA9DCNVd2QWDywLAlIaUUpRoFUsyaBZHQKBOJjo6jnF1fZQoaAZoCWgPQwgNx/MZUG8IwJSGlFKUaBVLMmgWR0CgTbruYx+KdX2UKGgGaAloD0MI8IrgfysZCMCUhpRSlGgVSzJoFkdAoE+s/QjUu3V9lChoBmgJaA9DCI6R7BFq9hTAlIaUUpRoFUsyaBZHQKBPV62OQyR1fZQoaAZoCWgPQwjePUD35UwLwJSGlFKUaBVLMmgWR0CgTuiJwbVCdX2UKGgGaAloD0MI/Uy9bhH4BsCUhpRSlGgVSzJoFkdAoE59LpRoAXV9lChoBmgJaA9DCAWlaOVe4AzAlIaUUpRoFUsyaBZHQKBQcxYaHbh1fZQoaAZoCWgPQwiwA+eMKA0HwJSGlFKUaBVLMmgWR0CgUB25Yoy9dX2UKGgGaAloD0MINBE2PL3iEMCUhpRSlGgVSzJoFkdAoE+u1lXii3V9lChoBmgJaA9DCOzctBmncRLAlIaUUpRoFUsyaBZHQKBPQ6J66at1fZQoaAZoCWgPQwihgO1gxF4GwJSGlFKUaBVLMmgWR0CgUT4TsY2sdX2UKGgGaAloD0MIV7CNeLLbCsCUhpRSlGgVSzJoFkdAoFDoyoGY8nV9lChoBmgJaA9DCGSxTSoaqwbAlIaUUpRoFUsyaBZHQKBQeazeGfx1fZQoaAZoCWgPQwjmBG1y+AQKwJSGlFKUaBVLMmgWR0CgUA5TyauwdX2UKGgGaAloD0MI/7ClR1NdA8CUhpRSlGgVSzJoFkdAoFITXYlIE3V9lChoBmgJaA9DCD7ONGH7SQfAlIaUUpRoFUsyaBZHQKBRvjoZAIJ1fZQoaAZoCWgPQwjVBieiX/sMwJSGlFKUaBVLMmgWR0CgUU8baRISdX2UKGgGaAloD0MI6s4Tz9lCBMCUhpRSlGgVSzJoFkdAoFDjxoZhrnV9lChoBmgJaA9DCHEDPj+MMA7AlIaUUpRoFUsyaBZHQKBS4CGN70F1fZQoaAZoCWgPQwgydVd2waAMwJSGlFKUaBVLMmgWR0CgUorAgxJvdX2UKGgGaAloD0MIG/UQje5ADcCUhpRSlGgVSzJoFkdAoFIbye7L+3V9lChoBmgJaA9DCH0geedQRgbAlIaUUpRoFUsyaBZHQKBRsHBUJfJ1fZQoaAZoCWgPQwgAyXTo9DwKwJSGlFKUaBVLMmgWR0CgU6tQKrq/dX2UKGgGaAloD0MIHv6arFHvE8CUhpRSlGgVSzJoFkdAoFNWEkB0ZHV9lChoBmgJaA9DCFopBHKJ4wbAlIaUUpRoFUsyaBZHQKBS5vAoG6h1fZQoaAZoCWgPQwgTtp+M8UEKwJSGlFKUaBVLMmgWR0CgUnunl4kedX2UKGgGaAloD0MItqFinL+pCsCUhpRSlGgVSzJoFkdAoFRvbVSXMXV9lChoBmgJaA9DCHxD4bN1UBbAlIaUUpRoFUsyaBZHQKBUGjW07bN1fZQoaAZoCWgPQwg1lxsMdSgewJSGlFKUaBVLMmgWR0CgU6sU7CBPdX2UKGgGaAloD0MIZCDPLt9aFcCUhpRSlGgVSzJoFkdAoFM/0h/y5XV9lChoBmgJaA9DCMRBQpQvyAvAlIaUUpRoFUsyaBZHQKBVOfwI+nt1fZQoaAZoCWgPQwiERrBx/bsJwJSGlFKUaBVLMmgWR0CgVOSaVlf7dX2UKGgGaAloD0MIgSTs20lEDMCUhpRSlGgVSzJoFkdAoFR1fqoqC3V9lChoBmgJaA9DCExw6gPJGxHAlIaUUpRoFUsyaBZHQKBUCkHD7651fZQoaAZoCWgPQwhXdyy2SUUFwJSGlFKUaBVLMmgWR0CgVgHq/ub7dX2UKGgGaAloD0MI+z2xTpVvBsCUhpRSlGgVSzJoFkdAoFWsqSX+l3V9lChoBmgJaA9DCCAJ+3YS4RDAlIaUUpRoFUsyaBZHQKBVPY/3WWh1fZQoaAZoCWgPQwjW5v9VR04GwJSGlFKUaBVLMmgWR0CgVNI8p1A8dX2UKGgGaAloD0MI8S2sG++uDcCUhpRSlGgVSzJoFkdAoFa98w5/9nV9lChoBmgJaA9DCM5PcRx4hRfAlIaUUpRoFUsyaBZHQKBWaJIDoyN1fZQoaAZoCWgPQwhO7QxTW5oRwJSGlFKUaBVLMmgWR0CgVflzuF6BdX2UKGgGaAloD0MITRWMSup0F8CUhpRSlGgVSzJoFkdAoFWOIdlunHV9lChoBmgJaA9DCACsjhzprAzAlIaUUpRoFUsyaBZHQKBXgK9f1Hx1fZQoaAZoCWgPQwg4LXjRVxAMwJSGlFKUaBVLMmgWR0CgVytk4FRpdX2UKGgGaAloD0MIuXAgJAsYE8CUhpRSlGgVSzJoFkdAoFa8TL4etHV9lChoBmgJaA9DCFNdwMsMixHAlIaUUpRoFUsyaBZHQKBWUPyTY/V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.341207633819431, "std_reward": 1.557285032459058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T21:40:38.644798"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faeada946c55577623cff6f39757fa8a50180fa0bb7cc5e963224c072673c06a
|
3 |
+
size 3212
|