--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: skops model_file: skops-4mj4y_67.skops widget: - structuredData: amplitude_cutoff: - .nan - .nan - .nan amplitude_cv_median: - .nan - .nan - .nan amplitude_cv_range: - .nan - .nan - .nan amplitude_median: - -231.14950561523438 - -32.41670227050781 - -49.5401496887207 drift_mad: - .nan - .nan - .nan drift_ptp: - .nan - .nan - .nan drift_std: - .nan - .nan - .nan firing_range: - 1.8000000000000007 - 3.2399999999999984 - 1.4399999999999995 firing_rate: - 14.4 - 14.6 - 13.8 isi_violations_count: - 0.0 - 0.0 - 0.0 isi_violations_ratio: - 0.0 - 0.0 - 0.0 num_spikes: - 144.0 - 146.0 - 138.0 presence_ratio: - .nan - .nan - .nan rp_contamination: - 0.0 - 0.0 - 0.0 rp_violations: - 0.0 - 0.0 - 0.0 sd_ratio: - 0.5912728859813103 - 1.1242492492431155 - 0.7087562828230378 sliding_rp_violation: - 0.14 - 0.13 - 0.145 snr: - 40.52572890814601 - 6.3489456520122625 - 9.014227884573495 sync_spike_2: - 0.0 - 0.0 - 0.007246376811594203 sync_spike_4: - 0.0 - 0.0 - 0.0 sync_spike_8: - 0.0 - 0.0 - 0.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |--------------------------------------|----------------------------------| | memory | | | steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('classifier', RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,
min_samples_split=3, n_estimators=103,
random_state=404159593))] | | verbose | False | | imputer | SimpleImputer(strategy='median') | | scaler | StandardScaler() | | classifier | RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,
min_samples_split=3, n_estimators=103,
random_state=404159593) | | imputer__add_indicator | False | | imputer__copy | True | | imputer__fill_value | | | imputer__keep_empty_features | False | | imputer__missing_values | nan | | imputer__strategy | median | | scaler__copy | True | | scaler__with_mean | True | | scaler__with_std | True | | classifier__bootstrap | True | | classifier__ccp_alpha | 0.0 | | classifier__class_weight | balanced_subsample | | classifier__criterion | gini | | classifier__max_depth | | | classifier__max_features | sqrt | | classifier__max_leaf_nodes | | | classifier__max_samples | | | classifier__min_impurity_decrease | 0.0 | | classifier__min_samples_leaf | 3 | | classifier__min_samples_split | 3 | | classifier__min_weight_fraction_leaf | 0.0 | | classifier__monotonic_cst | | | classifier__n_estimators | 103 | | classifier__n_jobs | | | classifier__oob_score | False | | classifier__random_state | 404159593 | | classifier__verbose | 0 | | classifier__warm_start | False |
### Model Plot
Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),('scaler', StandardScaler()),('classifier',RandomForestClassifier(class_weight='balanced_subsample',min_samples_leaf=3, min_samples_split=3,n_estimators=103,random_state=404159593))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```