---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: skops-4mj4y_67.skops
widget:
- structuredData:
amplitude_cutoff:
- .nan
- .nan
- .nan
amplitude_cv_median:
- .nan
- .nan
- .nan
amplitude_cv_range:
- .nan
- .nan
- .nan
amplitude_median:
- -231.14950561523438
- -32.41670227050781
- -49.5401496887207
drift_mad:
- .nan
- .nan
- .nan
drift_ptp:
- .nan
- .nan
- .nan
drift_std:
- .nan
- .nan
- .nan
firing_range:
- 1.8000000000000007
- 3.2399999999999984
- 1.4399999999999995
firing_rate:
- 14.4
- 14.6
- 13.8
isi_violations_count:
- 0.0
- 0.0
- 0.0
isi_violations_ratio:
- 0.0
- 0.0
- 0.0
num_spikes:
- 144.0
- 146.0
- 138.0
presence_ratio:
- .nan
- .nan
- .nan
rp_contamination:
- 0.0
- 0.0
- 0.0
rp_violations:
- 0.0
- 0.0
- 0.0
sd_ratio:
- 0.5912728859813103
- 1.1242492492431155
- 0.7087562828230378
sliding_rp_violation:
- 0.14
- 0.13
- 0.145
snr:
- 40.52572890814601
- 6.3489456520122625
- 9.014227884573495
sync_spike_2:
- 0.0
- 0.0
- 0.007246376811594203
sync_spike_4:
- 0.0
- 0.0
- 0.0
sync_spike_8:
- 0.0
- 0.0
- 0.0
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------------------|----------------------------------|
| memory | |
| steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('classifier', RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,
min_samples_split=3, n_estimators=103,
random_state=404159593))] |
| verbose | False |
| imputer | SimpleImputer(strategy='median') |
| scaler | StandardScaler() |
| classifier | RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,
min_samples_split=3, n_estimators=103,
random_state=404159593) |
| imputer__add_indicator | False |
| imputer__copy | True |
| imputer__fill_value | |
| imputer__keep_empty_features | False |
| imputer__missing_values | nan |
| imputer__strategy | median |
| scaler__copy | True |
| scaler__with_mean | True |
| scaler__with_std | True |
| classifier__bootstrap | True |
| classifier__ccp_alpha | 0.0 |
| classifier__class_weight | balanced_subsample |
| classifier__criterion | gini |
| classifier__max_depth | |
| classifier__max_features | sqrt |
| classifier__max_leaf_nodes | |
| classifier__max_samples | |
| classifier__min_impurity_decrease | 0.0 |
| classifier__min_samples_leaf | 3 |
| classifier__min_samples_split | 3 |
| classifier__min_weight_fraction_leaf | 0.0 |
| classifier__monotonic_cst | |
| classifier__n_estimators | 103 |
| classifier__n_jobs | |
| classifier__oob_score | False |
| classifier__random_state | 404159593 |
| classifier__verbose | 0 |
| classifier__warm_start | False |
Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),('scaler', StandardScaler()),('classifier',RandomForestClassifier(class_weight='balanced_subsample',min_samples_leaf=3, min_samples_split=3,n_estimators=103,random_state=404159593))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),('scaler', StandardScaler()),('classifier',RandomForestClassifier(class_weight='balanced_subsample',min_samples_leaf=3, min_samples_split=3,n_estimators=103,random_state=404159593))])
SimpleImputer(strategy='median')
StandardScaler()
RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,min_samples_split=3, n_estimators=103,random_state=404159593)