PEFT
Safetensors
English
chtmp223 commited on
Commit
d610bda
1 Parent(s): c6cefb1

First commit

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a5249e01ec6383d1e61416a3a514e18ce4d88662f0cbfd86e860caf4e69b67
3
+ size 83946192
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1090
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28c4884e413e8c06f75c2bfaf338b4e53759b9151b0cb22926d4aebf2fc46b69
3
+ size 15920
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:873eff60c8e6357f5fa85a50385c88ca9cf0e0a0535ba7fc6864e2c70977f92b
3
+ size 15920
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2816f3f249fa57d22d5ffd27f55cafabe858ed45602c4d8e0a6f5ef706d307
3
+ size 15920
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab5140b8841b2341003358f6a4336ce7c82f39cfe4ea84f4482ffa5ba3378216
3
+ size 15920
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b7a8024c4eb46676733602d133e854d0c2c6b995293cd169a9346e6e1f495bb
3
+ size 15920
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad952d06f615db1dde85fab9338d3edf363b230d27078b2ff85cbfe64f04e253
3
+ size 15920
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c45c7b33daf3523bdb950675e7c0e4852a141a29b86f10ec798c55d3bd47365
3
+ size 15920
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:378fc15897d25f81a3489c099e10ce3bacfcd815c1f3350be98373e4bf78e626
3
+ size 15920
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f7c897a26550ebcba2dd73c884c90083e3059d5fa4c2e0f2898326dd316ccb
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
trainer_state.json ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1090,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001834862385321101,
13
+ "grad_norm": 0.5285698626925894,
14
+ "learning_rate": 1.8315018315018315e-07,
15
+ "loss": 2.1792,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01834862385321101,
20
+ "grad_norm": 0.5570483132219919,
21
+ "learning_rate": 1.8315018315018316e-06,
22
+ "loss": 2.1303,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.03669724770642202,
27
+ "grad_norm": 0.43928839139908665,
28
+ "learning_rate": 3.663003663003663e-06,
29
+ "loss": 2.143,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.05504587155963303,
34
+ "grad_norm": 0.4259147884901134,
35
+ "learning_rate": 5.494505494505494e-06,
36
+ "loss": 2.0498,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.07339449541284404,
41
+ "grad_norm": 0.3256334236213354,
42
+ "learning_rate": 7.326007326007326e-06,
43
+ "loss": 2.1005,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.09174311926605505,
48
+ "grad_norm": 0.22687147012199685,
49
+ "learning_rate": 9.157509157509158e-06,
50
+ "loss": 2.032,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.11009174311926606,
55
+ "grad_norm": 0.20407900243790855,
56
+ "learning_rate": 1.0989010989010989e-05,
57
+ "loss": 2.0265,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.12844036697247707,
62
+ "grad_norm": 0.17272636847518857,
63
+ "learning_rate": 1.282051282051282e-05,
64
+ "loss": 2.0593,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.14678899082568808,
69
+ "grad_norm": 0.15668903317199465,
70
+ "learning_rate": 1.4652014652014653e-05,
71
+ "loss": 2.009,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.1651376146788991,
76
+ "grad_norm": 0.13299844821079024,
77
+ "learning_rate": 1.6483516483516486e-05,
78
+ "loss": 2.0319,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.1834862385321101,
83
+ "grad_norm": 0.130419681456145,
84
+ "learning_rate": 1.8315018315018315e-05,
85
+ "loss": 2.0057,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.2018348623853211,
90
+ "grad_norm": 0.13084640056684232,
91
+ "learning_rate": 2.0146520146520148e-05,
92
+ "loss": 2.0418,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.22018348623853212,
97
+ "grad_norm": 0.13600193042807687,
98
+ "learning_rate": 2.1978021978021977e-05,
99
+ "loss": 1.9938,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.23853211009174313,
104
+ "grad_norm": 0.13634836092075994,
105
+ "learning_rate": 2.380952380952381e-05,
106
+ "loss": 1.9859,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.25688073394495414,
111
+ "grad_norm": 0.1422134721246097,
112
+ "learning_rate": 2.564102564102564e-05,
113
+ "loss": 2.0146,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.27522935779816515,
118
+ "grad_norm": 0.15208974396882444,
119
+ "learning_rate": 2.7472527472527476e-05,
120
+ "loss": 2.0141,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.29357798165137616,
125
+ "grad_norm": 0.14861311683006395,
126
+ "learning_rate": 2.9304029304029305e-05,
127
+ "loss": 1.9914,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.3119266055045872,
132
+ "grad_norm": 0.154560148894899,
133
+ "learning_rate": 3.113553113553114e-05,
134
+ "loss": 1.9883,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.3302752293577982,
139
+ "grad_norm": 0.14659138270717795,
140
+ "learning_rate": 3.296703296703297e-05,
141
+ "loss": 1.98,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.3486238532110092,
146
+ "grad_norm": 0.14930915757375882,
147
+ "learning_rate": 3.47985347985348e-05,
148
+ "loss": 2.0039,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.3669724770642202,
153
+ "grad_norm": 0.15222292163468532,
154
+ "learning_rate": 3.663003663003663e-05,
155
+ "loss": 1.9972,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.3853211009174312,
160
+ "grad_norm": 0.1794465203569635,
161
+ "learning_rate": 3.846153846153846e-05,
162
+ "loss": 1.961,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.4036697247706422,
167
+ "grad_norm": 0.16111917245406526,
168
+ "learning_rate": 4.0293040293040296e-05,
169
+ "loss": 1.9689,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.42201834862385323,
174
+ "grad_norm": 0.16917075207279755,
175
+ "learning_rate": 4.212454212454213e-05,
176
+ "loss": 1.955,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.44036697247706424,
181
+ "grad_norm": 0.16035752232756367,
182
+ "learning_rate": 4.3956043956043955e-05,
183
+ "loss": 1.9784,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.45871559633027525,
188
+ "grad_norm": 0.15704206875567997,
189
+ "learning_rate": 4.578754578754579e-05,
190
+ "loss": 1.9898,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.47706422018348627,
195
+ "grad_norm": 0.17540759793553962,
196
+ "learning_rate": 4.761904761904762e-05,
197
+ "loss": 1.9835,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.4954128440366973,
202
+ "grad_norm": 0.15564282446806355,
203
+ "learning_rate": 4.945054945054945e-05,
204
+ "loss": 1.9849,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.5137614678899083,
209
+ "grad_norm": 0.1731016854986911,
210
+ "learning_rate": 4.9998994546487535e-05,
211
+ "loss": 1.984,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.5321100917431193,
216
+ "grad_norm": 0.16384332591458595,
217
+ "learning_rate": 4.999407007091408e-05,
218
+ "loss": 1.9846,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.5504587155963303,
223
+ "grad_norm": 0.16272027999288557,
224
+ "learning_rate": 4.998504270550914e-05,
225
+ "loss": 1.9773,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.5688073394495413,
230
+ "grad_norm": 0.1895435253320987,
231
+ "learning_rate": 4.997191393215565e-05,
232
+ "loss": 1.9544,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.5871559633027523,
237
+ "grad_norm": 0.153237870046719,
238
+ "learning_rate": 4.995468590600123e-05,
239
+ "loss": 1.9627,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.6055045871559633,
244
+ "grad_norm": 0.15686668474912246,
245
+ "learning_rate": 4.9933361455104425e-05,
246
+ "loss": 1.9977,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.6238532110091743,
251
+ "grad_norm": 0.16748791541980212,
252
+ "learning_rate": 4.990794407997044e-05,
253
+ "loss": 1.9657,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.6422018348623854,
258
+ "grad_norm": 0.1467745903785114,
259
+ "learning_rate": 4.9878437952976563e-05,
260
+ "loss": 1.9625,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.6605504587155964,
265
+ "grad_norm": 0.14836352242961773,
266
+ "learning_rate": 4.984484791768721e-05,
267
+ "loss": 1.9865,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.6788990825688074,
272
+ "grad_norm": 0.15162372625275922,
273
+ "learning_rate": 4.980717948805884e-05,
274
+ "loss": 1.9534,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.6972477064220184,
279
+ "grad_norm": 0.15628620060925916,
280
+ "learning_rate": 4.9765438847534825e-05,
281
+ "loss": 1.976,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.7155963302752294,
286
+ "grad_norm": 0.15072809988708077,
287
+ "learning_rate": 4.9719632848030405e-05,
288
+ "loss": 1.9598,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.7339449541284404,
293
+ "grad_norm": 0.14670892778532468,
294
+ "learning_rate": 4.966976900880791e-05,
295
+ "loss": 2.0001,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.7522935779816514,
300
+ "grad_norm": 0.15020025168070633,
301
+ "learning_rate": 4.9615855515242434e-05,
302
+ "loss": 1.9876,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.7706422018348624,
307
+ "grad_norm": 0.14345074549432202,
308
+ "learning_rate": 4.955790121747821e-05,
309
+ "loss": 1.9839,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.7889908256880734,
314
+ "grad_norm": 0.15176626779360905,
315
+ "learning_rate": 4.949591562897574e-05,
316
+ "loss": 1.9738,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.8073394495412844,
321
+ "grad_norm": 0.15234818977369388,
322
+ "learning_rate": 4.942990892495021e-05,
323
+ "loss": 2.0086,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.8256880733944955,
328
+ "grad_norm": 0.14268394349668895,
329
+ "learning_rate": 4.9359891940701086e-05,
330
+ "loss": 1.9797,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.8440366972477065,
335
+ "grad_norm": 0.15852698385870923,
336
+ "learning_rate": 4.9285876169833544e-05,
337
+ "loss": 1.9532,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.8623853211009175,
342
+ "grad_norm": 0.15294331275157483,
343
+ "learning_rate": 4.920787376237168e-05,
344
+ "loss": 1.992,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.8807339449541285,
349
+ "grad_norm": 0.15177058058835824,
350
+ "learning_rate": 4.9125897522764044e-05,
351
+ "loss": 1.9902,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.8990825688073395,
356
+ "grad_norm": 0.17927892676829146,
357
+ "learning_rate": 4.9039960907781746e-05,
358
+ "loss": 1.9694,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.9174311926605505,
363
+ "grad_norm": 0.14983509077226922,
364
+ "learning_rate": 4.895007802430944e-05,
365
+ "loss": 1.9506,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.9357798165137615,
370
+ "grad_norm": 0.16471555436795565,
371
+ "learning_rate": 4.885626362702966e-05,
372
+ "loss": 1.9841,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.9541284403669725,
377
+ "grad_norm": 0.1472502715125968,
378
+ "learning_rate": 4.8758533116000696e-05,
379
+ "loss": 1.9832,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.9724770642201835,
384
+ "grad_norm": 0.15070629202588426,
385
+ "learning_rate": 4.86569025341287e-05,
386
+ "loss": 1.9774,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.9908256880733946,
391
+ "grad_norm": 0.14316992610781615,
392
+ "learning_rate": 4.855138856453408e-05,
393
+ "loss": 1.9692,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 1.0091743119266054,
398
+ "grad_norm": 0.14585698001384728,
399
+ "learning_rate": 4.844200852781295e-05,
400
+ "loss": 1.9598,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 1.0275229357798166,
405
+ "grad_norm": 0.15101510050666817,
406
+ "learning_rate": 4.8328780379193885e-05,
407
+ "loss": 1.9773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 1.0458715596330275,
412
+ "grad_norm": 0.15415482414608545,
413
+ "learning_rate": 4.821172270559039e-05,
414
+ "loss": 1.9699,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 1.0642201834862386,
419
+ "grad_norm": 0.15483797940425081,
420
+ "learning_rate": 4.8090854722549914e-05,
421
+ "loss": 1.993,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 1.0825688073394495,
426
+ "grad_norm": 0.15815400043247343,
427
+ "learning_rate": 4.796619627109944e-05,
428
+ "loss": 1.939,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 1.1009174311926606,
433
+ "grad_norm": 0.1645249210360427,
434
+ "learning_rate": 4.7837767814488486e-05,
435
+ "loss": 1.9623,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 1.1192660550458715,
440
+ "grad_norm": 0.1647619918199487,
441
+ "learning_rate": 4.770559043483003e-05,
442
+ "loss": 1.9816,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 1.1376146788990826,
447
+ "grad_norm": 0.1679679060709561,
448
+ "learning_rate": 4.7569685829639734e-05,
449
+ "loss": 1.9611,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 1.1559633027522935,
454
+ "grad_norm": 0.1676170375866798,
455
+ "learning_rate": 4.743007630827423e-05,
456
+ "loss": 1.959,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 1.1743119266055047,
461
+ "grad_norm": 0.14905089408466188,
462
+ "learning_rate": 4.7286784788268904e-05,
463
+ "loss": 1.9269,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 1.1926605504587156,
468
+ "grad_norm": 0.162817312686442,
469
+ "learning_rate": 4.713983479157592e-05,
470
+ "loss": 1.9638,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 1.2110091743119267,
475
+ "grad_norm": 0.18370789078991157,
476
+ "learning_rate": 4.698925044070296e-05,
477
+ "loss": 1.9494,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 1.2293577981651376,
482
+ "grad_norm": 0.15795771627671365,
483
+ "learning_rate": 4.683505645475339e-05,
484
+ "loss": 1.96,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 1.2477064220183487,
489
+ "grad_norm": 0.15531127222157262,
490
+ "learning_rate": 4.6677278145368554e-05,
491
+ "loss": 1.969,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 1.2660550458715596,
496
+ "grad_norm": 0.15599004624517146,
497
+ "learning_rate": 4.65159414125727e-05,
498
+ "loss": 1.9435,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 1.2844036697247707,
503
+ "grad_norm": 0.16702581452844592,
504
+ "learning_rate": 4.6351072740521415e-05,
505
+ "loss": 1.9323,
506
+ "step": 700
507
+ },
508
+ {
509
+ "epoch": 1.3027522935779816,
510
+ "grad_norm": 0.15898151168116278,
511
+ "learning_rate": 4.6182699193154125e-05,
512
+ "loss": 1.9442,
513
+ "step": 710
514
+ },
515
+ {
516
+ "epoch": 1.3211009174311927,
517
+ "grad_norm": 0.15969818021992918,
518
+ "learning_rate": 4.601084840975139e-05,
519
+ "loss": 1.973,
520
+ "step": 720
521
+ },
522
+ {
523
+ "epoch": 1.3394495412844036,
524
+ "grad_norm": 0.15378573113733301,
525
+ "learning_rate": 4.583554860039784e-05,
526
+ "loss": 1.9366,
527
+ "step": 730
528
+ },
529
+ {
530
+ "epoch": 1.3577981651376148,
531
+ "grad_norm": 0.15121087319924134,
532
+ "learning_rate": 4.565682854135132e-05,
533
+ "loss": 1.9698,
534
+ "step": 740
535
+ },
536
+ {
537
+ "epoch": 1.3761467889908257,
538
+ "grad_norm": 0.15898725981112244,
539
+ "learning_rate": 4.547471757031919e-05,
540
+ "loss": 1.9604,
541
+ "step": 750
542
+ },
543
+ {
544
+ "epoch": 1.3944954128440368,
545
+ "grad_norm": 0.15306064791439133,
546
+ "learning_rate": 4.528924558164233e-05,
547
+ "loss": 1.962,
548
+ "step": 760
549
+ },
550
+ {
551
+ "epoch": 1.4128440366972477,
552
+ "grad_norm": 0.16371512899536222,
553
+ "learning_rate": 4.510044302138793e-05,
554
+ "loss": 1.9793,
555
+ "step": 770
556
+ },
557
+ {
558
+ "epoch": 1.4311926605504588,
559
+ "grad_norm": 0.15788911392614066,
560
+ "learning_rate": 4.490834088235157e-05,
561
+ "loss": 1.9801,
562
+ "step": 780
563
+ },
564
+ {
565
+ "epoch": 1.4495412844036697,
566
+ "grad_norm": 0.16398987312372718,
567
+ "learning_rate": 4.4712970698969645e-05,
568
+ "loss": 1.9236,
569
+ "step": 790
570
+ },
571
+ {
572
+ "epoch": 1.4678899082568808,
573
+ "grad_norm": 0.15020427466606878,
574
+ "learning_rate": 4.451436454214285e-05,
575
+ "loss": 1.9438,
576
+ "step": 800
577
+ },
578
+ {
579
+ "epoch": 1.4862385321100917,
580
+ "grad_norm": 0.1528061160370563,
581
+ "learning_rate": 4.4312555013971534e-05,
582
+ "loss": 1.9364,
583
+ "step": 810
584
+ },
585
+ {
586
+ "epoch": 1.5045871559633026,
587
+ "grad_norm": 0.15222177715019794,
588
+ "learning_rate": 4.4107575242404013e-05,
589
+ "loss": 1.9399,
590
+ "step": 820
591
+ },
592
+ {
593
+ "epoch": 1.5229357798165137,
594
+ "grad_norm": 0.1540985658911008,
595
+ "learning_rate": 4.38994588757984e-05,
596
+ "loss": 1.9483,
597
+ "step": 830
598
+ },
599
+ {
600
+ "epoch": 1.5412844036697249,
601
+ "grad_norm": 0.1599074284657503,
602
+ "learning_rate": 4.3688240077399074e-05,
603
+ "loss": 1.9748,
604
+ "step": 840
605
+ },
606
+ {
607
+ "epoch": 1.5596330275229358,
608
+ "grad_norm": 0.1516707606485465,
609
+ "learning_rate": 4.3473953519728685e-05,
610
+ "loss": 1.9213,
611
+ "step": 850
612
+ },
613
+ {
614
+ "epoch": 1.5779816513761467,
615
+ "grad_norm": 0.15122814764762293,
616
+ "learning_rate": 4.325663437889643e-05,
617
+ "loss": 1.9893,
618
+ "step": 860
619
+ },
620
+ {
621
+ "epoch": 1.5963302752293578,
622
+ "grad_norm": 0.15959987778428422,
623
+ "learning_rate": 4.30363183288238e-05,
624
+ "loss": 1.9602,
625
+ "step": 870
626
+ },
627
+ {
628
+ "epoch": 1.614678899082569,
629
+ "grad_norm": 0.15266741829090746,
630
+ "learning_rate": 4.2813041535388496e-05,
631
+ "loss": 1.9529,
632
+ "step": 880
633
+ },
634
+ {
635
+ "epoch": 1.6330275229357798,
636
+ "grad_norm": 0.16386079884752924,
637
+ "learning_rate": 4.258684065048766e-05,
638
+ "loss": 1.9606,
639
+ "step": 890
640
+ },
641
+ {
642
+ "epoch": 1.6513761467889907,
643
+ "grad_norm": 0.15583648586262694,
644
+ "learning_rate": 4.23577528060213e-05,
645
+ "loss": 1.9581,
646
+ "step": 900
647
+ },
648
+ {
649
+ "epoch": 1.6697247706422018,
650
+ "grad_norm": 0.1585736145888436,
651
+ "learning_rate": 4.212581560779689e-05,
652
+ "loss": 1.9552,
653
+ "step": 910
654
+ },
655
+ {
656
+ "epoch": 1.688073394495413,
657
+ "grad_norm": 0.16965341576331627,
658
+ "learning_rate": 4.1891067129356276e-05,
659
+ "loss": 1.9296,
660
+ "step": 920
661
+ },
662
+ {
663
+ "epoch": 1.7064220183486238,
664
+ "grad_norm": 0.15927292960064882,
665
+ "learning_rate": 4.165354590572564e-05,
666
+ "loss": 1.9762,
667
+ "step": 930
668
+ },
669
+ {
670
+ "epoch": 1.7247706422018347,
671
+ "grad_norm": 0.15450025224674474,
672
+ "learning_rate": 4.14132909270899e-05,
673
+ "loss": 1.9429,
674
+ "step": 940
675
+ },
676
+ {
677
+ "epoch": 1.7431192660550459,
678
+ "grad_norm": 0.15355485102004446,
679
+ "learning_rate": 4.117034163239219e-05,
680
+ "loss": 1.9233,
681
+ "step": 950
682
+ },
683
+ {
684
+ "epoch": 1.761467889908257,
685
+ "grad_norm": 0.15539982061507696,
686
+ "learning_rate": 4.092473790285986e-05,
687
+ "loss": 1.944,
688
+ "step": 960
689
+ },
690
+ {
691
+ "epoch": 1.7798165137614679,
692
+ "grad_norm": 0.1551191369865497,
693
+ "learning_rate": 4.0676520055457765e-05,
694
+ "loss": 1.945,
695
+ "step": 970
696
+ },
697
+ {
698
+ "epoch": 1.7981651376146788,
699
+ "grad_norm": 0.15695341020759185,
700
+ "learning_rate": 4.0425728836270037e-05,
701
+ "loss": 1.9656,
702
+ "step": 980
703
+ },
704
+ {
705
+ "epoch": 1.81651376146789,
706
+ "grad_norm": 0.16047022345268508,
707
+ "learning_rate": 4.017240541381146e-05,
708
+ "loss": 1.9546,
709
+ "step": 990
710
+ },
711
+ {
712
+ "epoch": 1.834862385321101,
713
+ "grad_norm": 0.1561566895170307,
714
+ "learning_rate": 3.9916591372269434e-05,
715
+ "loss": 1.9363,
716
+ "step": 1000
717
+ },
718
+ {
719
+ "epoch": 1.853211009174312,
720
+ "grad_norm": 0.15117586495122826,
721
+ "learning_rate": 3.9658328704677794e-05,
722
+ "loss": 1.978,
723
+ "step": 1010
724
+ },
725
+ {
726
+ "epoch": 1.8715596330275228,
727
+ "grad_norm": 0.1605982135175342,
728
+ "learning_rate": 3.939765980602342e-05,
729
+ "loss": 1.9713,
730
+ "step": 1020
731
+ },
732
+ {
733
+ "epoch": 1.889908256880734,
734
+ "grad_norm": 0.1602836931731585,
735
+ "learning_rate": 3.913462746628691e-05,
736
+ "loss": 2.0041,
737
+ "step": 1030
738
+ },
739
+ {
740
+ "epoch": 1.908256880733945,
741
+ "grad_norm": 0.16286472480475192,
742
+ "learning_rate": 3.886927486341844e-05,
743
+ "loss": 1.9352,
744
+ "step": 1040
745
+ },
746
+ {
747
+ "epoch": 1.926605504587156,
748
+ "grad_norm": 0.15449199584717296,
749
+ "learning_rate": 3.860164555624988e-05,
750
+ "loss": 1.97,
751
+ "step": 1050
752
+ },
753
+ {
754
+ "epoch": 1.9449541284403669,
755
+ "grad_norm": 0.14684566302878604,
756
+ "learning_rate": 3.833178347734443e-05,
757
+ "loss": 1.9433,
758
+ "step": 1060
759
+ },
760
+ {
761
+ "epoch": 1.963302752293578,
762
+ "grad_norm": 0.16167305499507623,
763
+ "learning_rate": 3.80597329257849e-05,
764
+ "loss": 1.9782,
765
+ "step": 1070
766
+ },
767
+ {
768
+ "epoch": 1.981651376146789,
769
+ "grad_norm": 0.1544185075202575,
770
+ "learning_rate": 3.778553855990176e-05,
771
+ "loss": 1.9253,
772
+ "step": 1080
773
+ },
774
+ {
775
+ "epoch": 2.0,
776
+ "grad_norm": 0.16072854970224754,
777
+ "learning_rate": 3.750924538994235e-05,
778
+ "loss": 1.9578,
779
+ "step": 1090
780
+ }
781
+ ],
782
+ "logging_steps": 10,
783
+ "max_steps": 2725,
784
+ "num_input_tokens_seen": 0,
785
+ "num_train_epochs": 5,
786
+ "save_steps": 5,
787
+ "stateful_callbacks": {
788
+ "TrainerControl": {
789
+ "args": {
790
+ "should_epoch_stop": false,
791
+ "should_evaluate": false,
792
+ "should_log": false,
793
+ "should_save": true,
794
+ "should_training_stop": false
795
+ },
796
+ "attributes": {}
797
+ }
798
+ },
799
+ "total_flos": 1.5869823436193792e+16,
800
+ "train_batch_size": 1,
801
+ "trial_name": null,
802
+ "trial_params": null
803
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c90183ac8f9afe09b314a736fcd6fbbaac4738bfb6c5e97864e724f23d3f4083
3
+ size 6392
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)