First commit
Browse files- README.md +202 -3
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
- trainer_state.json +803 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"o_proj",
|
25 |
+
"q_proj",
|
26 |
+
"up_proj",
|
27 |
+
"gate_proj",
|
28 |
+
"k_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9a5249e01ec6383d1e61416a3a514e18ce4d88662f0cbfd86e860caf4e69b67
|
3 |
+
size 83946192
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1090
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28c4884e413e8c06f75c2bfaf338b4e53759b9151b0cb22926d4aebf2fc46b69
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:873eff60c8e6357f5fa85a50385c88ca9cf0e0a0535ba7fc6864e2c70977f92b
|
3 |
+
size 15920
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f2816f3f249fa57d22d5ffd27f55cafabe858ed45602c4d8e0a6f5ef706d307
|
3 |
+
size 15920
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab5140b8841b2341003358f6a4336ce7c82f39cfe4ea84f4482ffa5ba3378216
|
3 |
+
size 15920
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b7a8024c4eb46676733602d133e854d0c2c6b995293cd169a9346e6e1f495bb
|
3 |
+
size 15920
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad952d06f615db1dde85fab9338d3edf363b230d27078b2ff85cbfe64f04e253
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c45c7b33daf3523bdb950675e7c0e4852a141a29b86f10ec798c55d3bd47365
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:378fc15897d25f81a3489c099e10ce3bacfcd815c1f3350be98373e4bf78e626
|
3 |
+
size 15920
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88f7c897a26550ebcba2dd73c884c90083e3059d5fa4c2e0f2898326dd316ccb
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 2048,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1090,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001834862385321101,
|
13 |
+
"grad_norm": 0.5285698626925894,
|
14 |
+
"learning_rate": 1.8315018315018315e-07,
|
15 |
+
"loss": 2.1792,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01834862385321101,
|
20 |
+
"grad_norm": 0.5570483132219919,
|
21 |
+
"learning_rate": 1.8315018315018316e-06,
|
22 |
+
"loss": 2.1303,
|
23 |
+
"step": 10
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03669724770642202,
|
27 |
+
"grad_norm": 0.43928839139908665,
|
28 |
+
"learning_rate": 3.663003663003663e-06,
|
29 |
+
"loss": 2.143,
|
30 |
+
"step": 20
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.05504587155963303,
|
34 |
+
"grad_norm": 0.4259147884901134,
|
35 |
+
"learning_rate": 5.494505494505494e-06,
|
36 |
+
"loss": 2.0498,
|
37 |
+
"step": 30
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.07339449541284404,
|
41 |
+
"grad_norm": 0.3256334236213354,
|
42 |
+
"learning_rate": 7.326007326007326e-06,
|
43 |
+
"loss": 2.1005,
|
44 |
+
"step": 40
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.09174311926605505,
|
48 |
+
"grad_norm": 0.22687147012199685,
|
49 |
+
"learning_rate": 9.157509157509158e-06,
|
50 |
+
"loss": 2.032,
|
51 |
+
"step": 50
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.11009174311926606,
|
55 |
+
"grad_norm": 0.20407900243790855,
|
56 |
+
"learning_rate": 1.0989010989010989e-05,
|
57 |
+
"loss": 2.0265,
|
58 |
+
"step": 60
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.12844036697247707,
|
62 |
+
"grad_norm": 0.17272636847518857,
|
63 |
+
"learning_rate": 1.282051282051282e-05,
|
64 |
+
"loss": 2.0593,
|
65 |
+
"step": 70
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.14678899082568808,
|
69 |
+
"grad_norm": 0.15668903317199465,
|
70 |
+
"learning_rate": 1.4652014652014653e-05,
|
71 |
+
"loss": 2.009,
|
72 |
+
"step": 80
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.1651376146788991,
|
76 |
+
"grad_norm": 0.13299844821079024,
|
77 |
+
"learning_rate": 1.6483516483516486e-05,
|
78 |
+
"loss": 2.0319,
|
79 |
+
"step": 90
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1834862385321101,
|
83 |
+
"grad_norm": 0.130419681456145,
|
84 |
+
"learning_rate": 1.8315018315018315e-05,
|
85 |
+
"loss": 2.0057,
|
86 |
+
"step": 100
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.2018348623853211,
|
90 |
+
"grad_norm": 0.13084640056684232,
|
91 |
+
"learning_rate": 2.0146520146520148e-05,
|
92 |
+
"loss": 2.0418,
|
93 |
+
"step": 110
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.22018348623853212,
|
97 |
+
"grad_norm": 0.13600193042807687,
|
98 |
+
"learning_rate": 2.1978021978021977e-05,
|
99 |
+
"loss": 1.9938,
|
100 |
+
"step": 120
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.23853211009174313,
|
104 |
+
"grad_norm": 0.13634836092075994,
|
105 |
+
"learning_rate": 2.380952380952381e-05,
|
106 |
+
"loss": 1.9859,
|
107 |
+
"step": 130
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.25688073394495414,
|
111 |
+
"grad_norm": 0.1422134721246097,
|
112 |
+
"learning_rate": 2.564102564102564e-05,
|
113 |
+
"loss": 2.0146,
|
114 |
+
"step": 140
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.27522935779816515,
|
118 |
+
"grad_norm": 0.15208974396882444,
|
119 |
+
"learning_rate": 2.7472527472527476e-05,
|
120 |
+
"loss": 2.0141,
|
121 |
+
"step": 150
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.29357798165137616,
|
125 |
+
"grad_norm": 0.14861311683006395,
|
126 |
+
"learning_rate": 2.9304029304029305e-05,
|
127 |
+
"loss": 1.9914,
|
128 |
+
"step": 160
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.3119266055045872,
|
132 |
+
"grad_norm": 0.154560148894899,
|
133 |
+
"learning_rate": 3.113553113553114e-05,
|
134 |
+
"loss": 1.9883,
|
135 |
+
"step": 170
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.3302752293577982,
|
139 |
+
"grad_norm": 0.14659138270717795,
|
140 |
+
"learning_rate": 3.296703296703297e-05,
|
141 |
+
"loss": 1.98,
|
142 |
+
"step": 180
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.3486238532110092,
|
146 |
+
"grad_norm": 0.14930915757375882,
|
147 |
+
"learning_rate": 3.47985347985348e-05,
|
148 |
+
"loss": 2.0039,
|
149 |
+
"step": 190
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.3669724770642202,
|
153 |
+
"grad_norm": 0.15222292163468532,
|
154 |
+
"learning_rate": 3.663003663003663e-05,
|
155 |
+
"loss": 1.9972,
|
156 |
+
"step": 200
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.3853211009174312,
|
160 |
+
"grad_norm": 0.1794465203569635,
|
161 |
+
"learning_rate": 3.846153846153846e-05,
|
162 |
+
"loss": 1.961,
|
163 |
+
"step": 210
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.4036697247706422,
|
167 |
+
"grad_norm": 0.16111917245406526,
|
168 |
+
"learning_rate": 4.0293040293040296e-05,
|
169 |
+
"loss": 1.9689,
|
170 |
+
"step": 220
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.42201834862385323,
|
174 |
+
"grad_norm": 0.16917075207279755,
|
175 |
+
"learning_rate": 4.212454212454213e-05,
|
176 |
+
"loss": 1.955,
|
177 |
+
"step": 230
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.44036697247706424,
|
181 |
+
"grad_norm": 0.16035752232756367,
|
182 |
+
"learning_rate": 4.3956043956043955e-05,
|
183 |
+
"loss": 1.9784,
|
184 |
+
"step": 240
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.45871559633027525,
|
188 |
+
"grad_norm": 0.15704206875567997,
|
189 |
+
"learning_rate": 4.578754578754579e-05,
|
190 |
+
"loss": 1.9898,
|
191 |
+
"step": 250
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.47706422018348627,
|
195 |
+
"grad_norm": 0.17540759793553962,
|
196 |
+
"learning_rate": 4.761904761904762e-05,
|
197 |
+
"loss": 1.9835,
|
198 |
+
"step": 260
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.4954128440366973,
|
202 |
+
"grad_norm": 0.15564282446806355,
|
203 |
+
"learning_rate": 4.945054945054945e-05,
|
204 |
+
"loss": 1.9849,
|
205 |
+
"step": 270
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.5137614678899083,
|
209 |
+
"grad_norm": 0.1731016854986911,
|
210 |
+
"learning_rate": 4.9998994546487535e-05,
|
211 |
+
"loss": 1.984,
|
212 |
+
"step": 280
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.5321100917431193,
|
216 |
+
"grad_norm": 0.16384332591458595,
|
217 |
+
"learning_rate": 4.999407007091408e-05,
|
218 |
+
"loss": 1.9846,
|
219 |
+
"step": 290
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.5504587155963303,
|
223 |
+
"grad_norm": 0.16272027999288557,
|
224 |
+
"learning_rate": 4.998504270550914e-05,
|
225 |
+
"loss": 1.9773,
|
226 |
+
"step": 300
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.5688073394495413,
|
230 |
+
"grad_norm": 0.1895435253320987,
|
231 |
+
"learning_rate": 4.997191393215565e-05,
|
232 |
+
"loss": 1.9544,
|
233 |
+
"step": 310
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.5871559633027523,
|
237 |
+
"grad_norm": 0.153237870046719,
|
238 |
+
"learning_rate": 4.995468590600123e-05,
|
239 |
+
"loss": 1.9627,
|
240 |
+
"step": 320
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.6055045871559633,
|
244 |
+
"grad_norm": 0.15686668474912246,
|
245 |
+
"learning_rate": 4.9933361455104425e-05,
|
246 |
+
"loss": 1.9977,
|
247 |
+
"step": 330
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.6238532110091743,
|
251 |
+
"grad_norm": 0.16748791541980212,
|
252 |
+
"learning_rate": 4.990794407997044e-05,
|
253 |
+
"loss": 1.9657,
|
254 |
+
"step": 340
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.6422018348623854,
|
258 |
+
"grad_norm": 0.1467745903785114,
|
259 |
+
"learning_rate": 4.9878437952976563e-05,
|
260 |
+
"loss": 1.9625,
|
261 |
+
"step": 350
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.6605504587155964,
|
265 |
+
"grad_norm": 0.14836352242961773,
|
266 |
+
"learning_rate": 4.984484791768721e-05,
|
267 |
+
"loss": 1.9865,
|
268 |
+
"step": 360
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.6788990825688074,
|
272 |
+
"grad_norm": 0.15162372625275922,
|
273 |
+
"learning_rate": 4.980717948805884e-05,
|
274 |
+
"loss": 1.9534,
|
275 |
+
"step": 370
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.6972477064220184,
|
279 |
+
"grad_norm": 0.15628620060925916,
|
280 |
+
"learning_rate": 4.9765438847534825e-05,
|
281 |
+
"loss": 1.976,
|
282 |
+
"step": 380
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.7155963302752294,
|
286 |
+
"grad_norm": 0.15072809988708077,
|
287 |
+
"learning_rate": 4.9719632848030405e-05,
|
288 |
+
"loss": 1.9598,
|
289 |
+
"step": 390
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.7339449541284404,
|
293 |
+
"grad_norm": 0.14670892778532468,
|
294 |
+
"learning_rate": 4.966976900880791e-05,
|
295 |
+
"loss": 2.0001,
|
296 |
+
"step": 400
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.7522935779816514,
|
300 |
+
"grad_norm": 0.15020025168070633,
|
301 |
+
"learning_rate": 4.9615855515242434e-05,
|
302 |
+
"loss": 1.9876,
|
303 |
+
"step": 410
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.7706422018348624,
|
307 |
+
"grad_norm": 0.14345074549432202,
|
308 |
+
"learning_rate": 4.955790121747821e-05,
|
309 |
+
"loss": 1.9839,
|
310 |
+
"step": 420
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.7889908256880734,
|
314 |
+
"grad_norm": 0.15176626779360905,
|
315 |
+
"learning_rate": 4.949591562897574e-05,
|
316 |
+
"loss": 1.9738,
|
317 |
+
"step": 430
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.8073394495412844,
|
321 |
+
"grad_norm": 0.15234818977369388,
|
322 |
+
"learning_rate": 4.942990892495021e-05,
|
323 |
+
"loss": 2.0086,
|
324 |
+
"step": 440
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.8256880733944955,
|
328 |
+
"grad_norm": 0.14268394349668895,
|
329 |
+
"learning_rate": 4.9359891940701086e-05,
|
330 |
+
"loss": 1.9797,
|
331 |
+
"step": 450
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.8440366972477065,
|
335 |
+
"grad_norm": 0.15852698385870923,
|
336 |
+
"learning_rate": 4.9285876169833544e-05,
|
337 |
+
"loss": 1.9532,
|
338 |
+
"step": 460
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.8623853211009175,
|
342 |
+
"grad_norm": 0.15294331275157483,
|
343 |
+
"learning_rate": 4.920787376237168e-05,
|
344 |
+
"loss": 1.992,
|
345 |
+
"step": 470
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.8807339449541285,
|
349 |
+
"grad_norm": 0.15177058058835824,
|
350 |
+
"learning_rate": 4.9125897522764044e-05,
|
351 |
+
"loss": 1.9902,
|
352 |
+
"step": 480
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.8990825688073395,
|
356 |
+
"grad_norm": 0.17927892676829146,
|
357 |
+
"learning_rate": 4.9039960907781746e-05,
|
358 |
+
"loss": 1.9694,
|
359 |
+
"step": 490
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.9174311926605505,
|
363 |
+
"grad_norm": 0.14983509077226922,
|
364 |
+
"learning_rate": 4.895007802430944e-05,
|
365 |
+
"loss": 1.9506,
|
366 |
+
"step": 500
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.9357798165137615,
|
370 |
+
"grad_norm": 0.16471555436795565,
|
371 |
+
"learning_rate": 4.885626362702966e-05,
|
372 |
+
"loss": 1.9841,
|
373 |
+
"step": 510
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.9541284403669725,
|
377 |
+
"grad_norm": 0.1472502715125968,
|
378 |
+
"learning_rate": 4.8758533116000696e-05,
|
379 |
+
"loss": 1.9832,
|
380 |
+
"step": 520
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.9724770642201835,
|
384 |
+
"grad_norm": 0.15070629202588426,
|
385 |
+
"learning_rate": 4.86569025341287e-05,
|
386 |
+
"loss": 1.9774,
|
387 |
+
"step": 530
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.9908256880733946,
|
391 |
+
"grad_norm": 0.14316992610781615,
|
392 |
+
"learning_rate": 4.855138856453408e-05,
|
393 |
+
"loss": 1.9692,
|
394 |
+
"step": 540
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.0091743119266054,
|
398 |
+
"grad_norm": 0.14585698001384728,
|
399 |
+
"learning_rate": 4.844200852781295e-05,
|
400 |
+
"loss": 1.9598,
|
401 |
+
"step": 550
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.0275229357798166,
|
405 |
+
"grad_norm": 0.15101510050666817,
|
406 |
+
"learning_rate": 4.8328780379193885e-05,
|
407 |
+
"loss": 1.9773,
|
408 |
+
"step": 560
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.0458715596330275,
|
412 |
+
"grad_norm": 0.15415482414608545,
|
413 |
+
"learning_rate": 4.821172270559039e-05,
|
414 |
+
"loss": 1.9699,
|
415 |
+
"step": 570
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.0642201834862386,
|
419 |
+
"grad_norm": 0.15483797940425081,
|
420 |
+
"learning_rate": 4.8090854722549914e-05,
|
421 |
+
"loss": 1.993,
|
422 |
+
"step": 580
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.0825688073394495,
|
426 |
+
"grad_norm": 0.15815400043247343,
|
427 |
+
"learning_rate": 4.796619627109944e-05,
|
428 |
+
"loss": 1.939,
|
429 |
+
"step": 590
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.1009174311926606,
|
433 |
+
"grad_norm": 0.1645249210360427,
|
434 |
+
"learning_rate": 4.7837767814488486e-05,
|
435 |
+
"loss": 1.9623,
|
436 |
+
"step": 600
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.1192660550458715,
|
440 |
+
"grad_norm": 0.1647619918199487,
|
441 |
+
"learning_rate": 4.770559043483003e-05,
|
442 |
+
"loss": 1.9816,
|
443 |
+
"step": 610
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.1376146788990826,
|
447 |
+
"grad_norm": 0.1679679060709561,
|
448 |
+
"learning_rate": 4.7569685829639734e-05,
|
449 |
+
"loss": 1.9611,
|
450 |
+
"step": 620
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.1559633027522935,
|
454 |
+
"grad_norm": 0.1676170375866798,
|
455 |
+
"learning_rate": 4.743007630827423e-05,
|
456 |
+
"loss": 1.959,
|
457 |
+
"step": 630
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.1743119266055047,
|
461 |
+
"grad_norm": 0.14905089408466188,
|
462 |
+
"learning_rate": 4.7286784788268904e-05,
|
463 |
+
"loss": 1.9269,
|
464 |
+
"step": 640
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.1926605504587156,
|
468 |
+
"grad_norm": 0.162817312686442,
|
469 |
+
"learning_rate": 4.713983479157592e-05,
|
470 |
+
"loss": 1.9638,
|
471 |
+
"step": 650
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.2110091743119267,
|
475 |
+
"grad_norm": 0.18370789078991157,
|
476 |
+
"learning_rate": 4.698925044070296e-05,
|
477 |
+
"loss": 1.9494,
|
478 |
+
"step": 660
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.2293577981651376,
|
482 |
+
"grad_norm": 0.15795771627671365,
|
483 |
+
"learning_rate": 4.683505645475339e-05,
|
484 |
+
"loss": 1.96,
|
485 |
+
"step": 670
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.2477064220183487,
|
489 |
+
"grad_norm": 0.15531127222157262,
|
490 |
+
"learning_rate": 4.6677278145368554e-05,
|
491 |
+
"loss": 1.969,
|
492 |
+
"step": 680
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.2660550458715596,
|
496 |
+
"grad_norm": 0.15599004624517146,
|
497 |
+
"learning_rate": 4.65159414125727e-05,
|
498 |
+
"loss": 1.9435,
|
499 |
+
"step": 690
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.2844036697247707,
|
503 |
+
"grad_norm": 0.16702581452844592,
|
504 |
+
"learning_rate": 4.6351072740521415e-05,
|
505 |
+
"loss": 1.9323,
|
506 |
+
"step": 700
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.3027522935779816,
|
510 |
+
"grad_norm": 0.15898151168116278,
|
511 |
+
"learning_rate": 4.6182699193154125e-05,
|
512 |
+
"loss": 1.9442,
|
513 |
+
"step": 710
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.3211009174311927,
|
517 |
+
"grad_norm": 0.15969818021992918,
|
518 |
+
"learning_rate": 4.601084840975139e-05,
|
519 |
+
"loss": 1.973,
|
520 |
+
"step": 720
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.3394495412844036,
|
524 |
+
"grad_norm": 0.15378573113733301,
|
525 |
+
"learning_rate": 4.583554860039784e-05,
|
526 |
+
"loss": 1.9366,
|
527 |
+
"step": 730
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.3577981651376148,
|
531 |
+
"grad_norm": 0.15121087319924134,
|
532 |
+
"learning_rate": 4.565682854135132e-05,
|
533 |
+
"loss": 1.9698,
|
534 |
+
"step": 740
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.3761467889908257,
|
538 |
+
"grad_norm": 0.15898725981112244,
|
539 |
+
"learning_rate": 4.547471757031919e-05,
|
540 |
+
"loss": 1.9604,
|
541 |
+
"step": 750
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.3944954128440368,
|
545 |
+
"grad_norm": 0.15306064791439133,
|
546 |
+
"learning_rate": 4.528924558164233e-05,
|
547 |
+
"loss": 1.962,
|
548 |
+
"step": 760
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.4128440366972477,
|
552 |
+
"grad_norm": 0.16371512899536222,
|
553 |
+
"learning_rate": 4.510044302138793e-05,
|
554 |
+
"loss": 1.9793,
|
555 |
+
"step": 770
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.4311926605504588,
|
559 |
+
"grad_norm": 0.15788911392614066,
|
560 |
+
"learning_rate": 4.490834088235157e-05,
|
561 |
+
"loss": 1.9801,
|
562 |
+
"step": 780
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.4495412844036697,
|
566 |
+
"grad_norm": 0.16398987312372718,
|
567 |
+
"learning_rate": 4.4712970698969645e-05,
|
568 |
+
"loss": 1.9236,
|
569 |
+
"step": 790
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.4678899082568808,
|
573 |
+
"grad_norm": 0.15020427466606878,
|
574 |
+
"learning_rate": 4.451436454214285e-05,
|
575 |
+
"loss": 1.9438,
|
576 |
+
"step": 800
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.4862385321100917,
|
580 |
+
"grad_norm": 0.1528061160370563,
|
581 |
+
"learning_rate": 4.4312555013971534e-05,
|
582 |
+
"loss": 1.9364,
|
583 |
+
"step": 810
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.5045871559633026,
|
587 |
+
"grad_norm": 0.15222177715019794,
|
588 |
+
"learning_rate": 4.4107575242404013e-05,
|
589 |
+
"loss": 1.9399,
|
590 |
+
"step": 820
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.5229357798165137,
|
594 |
+
"grad_norm": 0.1540985658911008,
|
595 |
+
"learning_rate": 4.38994588757984e-05,
|
596 |
+
"loss": 1.9483,
|
597 |
+
"step": 830
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.5412844036697249,
|
601 |
+
"grad_norm": 0.1599074284657503,
|
602 |
+
"learning_rate": 4.3688240077399074e-05,
|
603 |
+
"loss": 1.9748,
|
604 |
+
"step": 840
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.5596330275229358,
|
608 |
+
"grad_norm": 0.1516707606485465,
|
609 |
+
"learning_rate": 4.3473953519728685e-05,
|
610 |
+
"loss": 1.9213,
|
611 |
+
"step": 850
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.5779816513761467,
|
615 |
+
"grad_norm": 0.15122814764762293,
|
616 |
+
"learning_rate": 4.325663437889643e-05,
|
617 |
+
"loss": 1.9893,
|
618 |
+
"step": 860
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.5963302752293578,
|
622 |
+
"grad_norm": 0.15959987778428422,
|
623 |
+
"learning_rate": 4.30363183288238e-05,
|
624 |
+
"loss": 1.9602,
|
625 |
+
"step": 870
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.614678899082569,
|
629 |
+
"grad_norm": 0.15266741829090746,
|
630 |
+
"learning_rate": 4.2813041535388496e-05,
|
631 |
+
"loss": 1.9529,
|
632 |
+
"step": 880
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.6330275229357798,
|
636 |
+
"grad_norm": 0.16386079884752924,
|
637 |
+
"learning_rate": 4.258684065048766e-05,
|
638 |
+
"loss": 1.9606,
|
639 |
+
"step": 890
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.6513761467889907,
|
643 |
+
"grad_norm": 0.15583648586262694,
|
644 |
+
"learning_rate": 4.23577528060213e-05,
|
645 |
+
"loss": 1.9581,
|
646 |
+
"step": 900
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.6697247706422018,
|
650 |
+
"grad_norm": 0.1585736145888436,
|
651 |
+
"learning_rate": 4.212581560779689e-05,
|
652 |
+
"loss": 1.9552,
|
653 |
+
"step": 910
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.688073394495413,
|
657 |
+
"grad_norm": 0.16965341576331627,
|
658 |
+
"learning_rate": 4.1891067129356276e-05,
|
659 |
+
"loss": 1.9296,
|
660 |
+
"step": 920
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.7064220183486238,
|
664 |
+
"grad_norm": 0.15927292960064882,
|
665 |
+
"learning_rate": 4.165354590572564e-05,
|
666 |
+
"loss": 1.9762,
|
667 |
+
"step": 930
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.7247706422018347,
|
671 |
+
"grad_norm": 0.15450025224674474,
|
672 |
+
"learning_rate": 4.14132909270899e-05,
|
673 |
+
"loss": 1.9429,
|
674 |
+
"step": 940
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.7431192660550459,
|
678 |
+
"grad_norm": 0.15355485102004446,
|
679 |
+
"learning_rate": 4.117034163239219e-05,
|
680 |
+
"loss": 1.9233,
|
681 |
+
"step": 950
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.761467889908257,
|
685 |
+
"grad_norm": 0.15539982061507696,
|
686 |
+
"learning_rate": 4.092473790285986e-05,
|
687 |
+
"loss": 1.944,
|
688 |
+
"step": 960
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.7798165137614679,
|
692 |
+
"grad_norm": 0.1551191369865497,
|
693 |
+
"learning_rate": 4.0676520055457765e-05,
|
694 |
+
"loss": 1.945,
|
695 |
+
"step": 970
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.7981651376146788,
|
699 |
+
"grad_norm": 0.15695341020759185,
|
700 |
+
"learning_rate": 4.0425728836270037e-05,
|
701 |
+
"loss": 1.9656,
|
702 |
+
"step": 980
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.81651376146789,
|
706 |
+
"grad_norm": 0.16047022345268508,
|
707 |
+
"learning_rate": 4.017240541381146e-05,
|
708 |
+
"loss": 1.9546,
|
709 |
+
"step": 990
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.834862385321101,
|
713 |
+
"grad_norm": 0.1561566895170307,
|
714 |
+
"learning_rate": 3.9916591372269434e-05,
|
715 |
+
"loss": 1.9363,
|
716 |
+
"step": 1000
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.853211009174312,
|
720 |
+
"grad_norm": 0.15117586495122826,
|
721 |
+
"learning_rate": 3.9658328704677794e-05,
|
722 |
+
"loss": 1.978,
|
723 |
+
"step": 1010
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.8715596330275228,
|
727 |
+
"grad_norm": 0.1605982135175342,
|
728 |
+
"learning_rate": 3.939765980602342e-05,
|
729 |
+
"loss": 1.9713,
|
730 |
+
"step": 1020
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.889908256880734,
|
734 |
+
"grad_norm": 0.1602836931731585,
|
735 |
+
"learning_rate": 3.913462746628691e-05,
|
736 |
+
"loss": 2.0041,
|
737 |
+
"step": 1030
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.908256880733945,
|
741 |
+
"grad_norm": 0.16286472480475192,
|
742 |
+
"learning_rate": 3.886927486341844e-05,
|
743 |
+
"loss": 1.9352,
|
744 |
+
"step": 1040
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.926605504587156,
|
748 |
+
"grad_norm": 0.15449199584717296,
|
749 |
+
"learning_rate": 3.860164555624988e-05,
|
750 |
+
"loss": 1.97,
|
751 |
+
"step": 1050
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.9449541284403669,
|
755 |
+
"grad_norm": 0.14684566302878604,
|
756 |
+
"learning_rate": 3.833178347734443e-05,
|
757 |
+
"loss": 1.9433,
|
758 |
+
"step": 1060
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.963302752293578,
|
762 |
+
"grad_norm": 0.16167305499507623,
|
763 |
+
"learning_rate": 3.80597329257849e-05,
|
764 |
+
"loss": 1.9782,
|
765 |
+
"step": 1070
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.981651376146789,
|
769 |
+
"grad_norm": 0.1544185075202575,
|
770 |
+
"learning_rate": 3.778553855990176e-05,
|
771 |
+
"loss": 1.9253,
|
772 |
+
"step": 1080
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 2.0,
|
776 |
+
"grad_norm": 0.16072854970224754,
|
777 |
+
"learning_rate": 3.750924538994235e-05,
|
778 |
+
"loss": 1.9578,
|
779 |
+
"step": 1090
|
780 |
+
}
|
781 |
+
],
|
782 |
+
"logging_steps": 10,
|
783 |
+
"max_steps": 2725,
|
784 |
+
"num_input_tokens_seen": 0,
|
785 |
+
"num_train_epochs": 5,
|
786 |
+
"save_steps": 5,
|
787 |
+
"stateful_callbacks": {
|
788 |
+
"TrainerControl": {
|
789 |
+
"args": {
|
790 |
+
"should_epoch_stop": false,
|
791 |
+
"should_evaluate": false,
|
792 |
+
"should_log": false,
|
793 |
+
"should_save": true,
|
794 |
+
"should_training_stop": false
|
795 |
+
},
|
796 |
+
"attributes": {}
|
797 |
+
}
|
798 |
+
},
|
799 |
+
"total_flos": 1.5869823436193792e+16,
|
800 |
+
"train_batch_size": 1,
|
801 |
+
"trial_name": null,
|
802 |
+
"trial_params": null
|
803 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c90183ac8f9afe09b314a736fcd6fbbaac4738bfb6c5e97864e724f23d3f4083
|
3 |
+
size 6392
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|