|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
|
|
import fire |
|
from tqdm import tqdm |
|
|
|
from llmtuner.data import get_dataset |
|
from llmtuner.hparams import get_train_args |
|
from llmtuner.model import load_tokenizer |
|
|
|
|
|
def length_cdf( |
|
model_name_or_path: str, |
|
dataset: str = "alpaca_en", |
|
dataset_dir: str = "data", |
|
template: str = "default", |
|
interval: int = 1000, |
|
): |
|
model_args, data_args, training_args, _, _ = get_train_args( |
|
dict( |
|
stage="sft", |
|
model_name_or_path=model_name_or_path, |
|
dataset=dataset, |
|
dataset_dir=dataset_dir, |
|
template=template, |
|
cutoff_len=1_000_000, |
|
output_dir="dummy_dir", |
|
overwrite_cache=True, |
|
) |
|
) |
|
tokenizer_module = load_tokenizer(model_args) |
|
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) |
|
total_num = len(trainset) |
|
length_dict = defaultdict(int) |
|
for sample in tqdm(trainset["input_ids"]): |
|
length_dict[len(sample) // interval * interval] += 1 |
|
|
|
length_tuples = list(length_dict.items()) |
|
length_tuples.sort() |
|
count_accu, prob_accu = 0, 0 |
|
for length, count in length_tuples: |
|
count_accu += count |
|
prob_accu += count / total_num * 100 |
|
print("{:d} ({:.2f}%) samples have length < {}.".format(count_accu, prob_accu, length + interval)) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(length_cdf) |
|
|