|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Optional |
|
|
|
import fire |
|
import torch |
|
from safetensors.torch import save_file |
|
from tqdm import tqdm |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
|
from transformers.modeling_utils import ( |
|
SAFE_WEIGHTS_INDEX_NAME, |
|
SAFE_WEIGHTS_NAME, |
|
WEIGHTS_INDEX_NAME, |
|
WEIGHTS_NAME, |
|
shard_checkpoint, |
|
) |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
|
|
|
|
def change_name(name: str, old_index: int, new_index: int) -> str: |
|
return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index)) |
|
|
|
|
|
def block_expansion( |
|
model_name_or_path: str, |
|
output_dir: str, |
|
num_expand: int, |
|
shard_size: Optional[str] = "2GB", |
|
save_safetensors: Optional[bool] = False, |
|
): |
|
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) |
|
num_layers = getattr(config, "num_hidden_layers") |
|
setattr(config, "num_hidden_layers", num_layers + num_expand) |
|
config.save_pretrained(output_dir) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) |
|
if save_safetensors: |
|
setattr(config, "tie_word_embeddings", False) |
|
|
|
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
config=config, |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
) |
|
state_dict = model.state_dict() |
|
|
|
if num_layers % num_expand != 0: |
|
raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand)) |
|
|
|
split = num_layers // num_expand |
|
layer_cnt = 0 |
|
output_state_dict = OrderedDict() |
|
for i in range(num_layers): |
|
for key, value in state_dict.items(): |
|
if ".{:d}.".format(i) in key: |
|
output_state_dict[change_name(key, i, layer_cnt)] = value |
|
|
|
print("Add layer {} copied from layer {}".format(layer_cnt, i)) |
|
layer_cnt += 1 |
|
if (i + 1) % split == 0: |
|
for key, value in state_dict.items(): |
|
if ".{:d}.".format(i) in key: |
|
if "down_proj" in key or "o_proj" in key: |
|
output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value) |
|
else: |
|
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value) |
|
|
|
print("Add layer {} expanded from layer {}".format(layer_cnt, i)) |
|
layer_cnt += 1 |
|
|
|
for key, value in state_dict.items(): |
|
if key not in output_state_dict: |
|
output_state_dict[key] = value |
|
|
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME |
|
shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name) |
|
|
|
for shard_file, shard in tqdm(shards.items(), desc="Save weights"): |
|
if save_safetensors: |
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) |
|
else: |
|
torch.save(shard, os.path.join(output_dir, shard_file)) |
|
|
|
if index is None: |
|
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name))) |
|
else: |
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME |
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: |
|
json.dump(index, f, indent=2, sort_keys=True) |
|
print("Model weights saved in {}".format(output_dir)) |
|
|
|
print("Fine-tune this model with:") |
|
print(" --model_name_or_path {} \\".format(output_dir)) |
|
print(" --finetuning_type freeze \\") |
|
print(" --name_module_trainable all \\") |
|
print(" --num_layer_trainable {} \\".format(num_expand)) |
|
print(" --use_llama_pro") |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(block_expansion) |
|
|