File size: 5,173 Bytes
c2e91e9 9656442 c2e91e9 9656442 c2e91e9 9656442 c2e91e9 9656442 c2e91e9 9656442 c2e91e9 6ddaae5 c2e91e9 9656442 c2e91e9 9656442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-medium-myanmar
results: []
datasets:
- chuuhtetnaing/myanmar-speech-dataset-openslr-80
language:
- my
pipeline_tag: automatic-speech-recognition
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-myanmar
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [chuuhtetnaing/myanmar-speech-dataset-openslr-80](https://huggingface.co/datasets/chuuhtetnaing/myanmar-speech-dataset-openslr-80) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2282
- Wer: 49.4657
## Usage
```python
from datasets import Audio, load_dataset
from transformers import pipeline
# Load a sample audio
dataset = load_dataset("chuuhtetnaing/myanmar-speech-dataset-openslr-80")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
test_dataset = dataset['test']
input_speech = test_dataset[42]['audio']
pipe = pipeline(model='chuuhtetnaing/whisper-medium-myanmar')
output = pipe(input_speech, generate_kwargs={"language": "myanmar", "task": "transcribe"})
print(output['text']) # αα»α ααΌααΊα ααΎα¬ ααα¬αααΊ αα±α¬α· α
α¬αα±αΈαα½α² ααα― ααααΊααα« α
α
αΊαααΊ
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.8546 | 1.0 | 57 | 0.5703 | 98.0855 |
| 0.2643 | 2.0 | 114 | 0.2404 | 84.9510 |
| 0.1982 | 3.0 | 171 | 0.1889 | 71.6385 |
| 0.1608 | 4.0 | 228 | 0.1781 | 68.4773 |
| 0.1212 | 5.0 | 285 | 0.1511 | 63.7133 |
| 0.1067 | 6.0 | 342 | 0.1427 | 60.2404 |
| 0.0682 | 7.0 | 399 | 0.1330 | 59.3500 |
| 0.0413 | 8.0 | 456 | 0.1322 | 56.9902 |
| 0.0249 | 9.0 | 513 | 0.1271 | 55.6545 |
| 0.0158 | 10.0 | 570 | 0.1430 | 54.8085 |
| 0.0124 | 11.0 | 627 | 0.1486 | 55.0312 |
| 0.0099 | 12.0 | 684 | 0.1550 | 53.7845 |
| 0.0082 | 13.0 | 741 | 0.1486 | 55.1647 |
| 0.0057 | 14.0 | 798 | 0.1747 | 53.6955 |
| 0.0041 | 15.0 | 855 | 0.1608 | 53.3393 |
| 0.0029 | 16.0 | 912 | 0.1596 | 50.6233 |
| 0.0013 | 17.0 | 969 | 0.1798 | 51.2912 |
| 0.0005 | 18.0 | 1026 | 0.1796 | 50.3562 |
| 0.0006 | 19.0 | 1083 | 0.1799 | 50.0890 |
| 0.0 | 20.0 | 1140 | 0.1849 | 50.2671 |
| 0.0001 | 21.0 | 1197 | 0.1878 | 50.0445 |
| 0.0 | 22.0 | 1254 | 0.1907 | 50.1781 |
| 0.0 | 23.0 | 1311 | 0.1929 | 50.0890 |
| 0.0 | 24.0 | 1368 | 0.1942 | 49.8664 |
| 0.0 | 25.0 | 1425 | 0.2019 | 50.0445 |
| 0.0 | 26.0 | 1482 | 0.2068 | 49.9555 |
| 0.0 | 27.0 | 1539 | 0.2103 | 50.0 |
| 0.0 | 28.0 | 1596 | 0.2129 | 49.9555 |
| 0.0 | 29.0 | 1653 | 0.2150 | 50.0 |
| 0.0 | 30.0 | 1710 | 0.2168 | 49.9555 |
| 0.0 | 31.0 | 1767 | 0.2183 | 49.9555 |
| 0.0 | 32.0 | 1824 | 0.2196 | 49.8664 |
| 0.0 | 33.0 | 1881 | 0.2208 | 49.6438 |
| 0.0 | 34.0 | 1938 | 0.2218 | 49.7329 |
| 0.0 | 35.0 | 1995 | 0.2227 | 49.5993 |
| 0.0 | 36.0 | 2052 | 0.2234 | 49.5548 |
| 0.0 | 37.0 | 2109 | 0.2242 | 49.5548 |
| 0.0 | 38.0 | 2166 | 0.2248 | 49.5102 |
| 0.0 | 39.0 | 2223 | 0.2253 | 49.5548 |
| 0.0 | 40.0 | 2280 | 0.2259 | 49.5548 |
| 0.0 | 41.0 | 2337 | 0.2263 | 49.5548 |
| 0.0 | 42.0 | 2394 | 0.2267 | 49.4657 |
| 0.0 | 43.0 | 2451 | 0.2271 | 49.5102 |
| 0.0 | 44.0 | 2508 | 0.2274 | 49.5102 |
| 0.0 | 45.0 | 2565 | 0.2276 | 49.4657 |
| 0.0 | 46.0 | 2622 | 0.2278 | 49.4657 |
| 0.0 | 47.0 | 2679 | 0.2280 | 49.5548 |
| 0.0 | 48.0 | 2736 | 0.2281 | 49.5102 |
| 0.0 | 49.0 | 2793 | 0.2282 | 49.5102 |
| 0.0 | 50.0 | 2850 | 0.2282 | 49.4657 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.15.1 |