--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-myanmar results: [] datasets: - chuuhtetnaing/myanmar-speech-dataset-openslr-80 language: - my pipeline_tag: automatic-speech-recognition library_name: transformers --- # whisper-small-myanmar This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [chuuhtetnaing/myanmar-speech-dataset-openslr-80](https://huggingface.co/datasets/chuuhtetnaing/myanmar-speech-dataset-openslr-80) dataset. It achieves the following results on the evaluation set: - Loss: 0.1904 - Wer: 49.0650 ## Usage ```python from datasets import Audio, load_dataset from transformers import pipeline # Load a sample audio dataset = load_dataset("chuuhtetnaing/myanmar-speech-dataset-openslr-80") dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) test_dataset = dataset['test'] input_speech = test_dataset[42]['audio'] pipe = pipeline(model='chuuhtetnaing/whisper-small-myanmar') output = pipe(input_speech, generate_kwargs={"language": "myanmar", "task": "transcribe"}) print(output['text']) # ကျွန်မ ပြည်ပ မှာ ပညာသင် တော့ စာမေးပွဲ ကို တပတ်တခါ စစ်တယ် ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2566 | 1.0 | 36 | 0.8893 | 215.0045 | | 0.8862 | 2.0 | 72 | 0.6243 | 388.6465 | | 0.3546 | 3.0 | 108 | 0.2046 | 316.8744 | | 0.1839 | 4.0 | 144 | 0.1695 | 81.3001 | | 0.1198 | 5.0 | 180 | 0.1385 | 63.8914 | | 0.0969 | 6.0 | 216 | 0.1583 | 66.0285 | | 0.084 | 7.0 | 252 | 0.1539 | 70.6589 | | 0.0628 | 8.0 | 288 | 0.1603 | 61.3090 | | 0.0565 | 9.0 | 324 | 0.1424 | 60.3295 | | 0.0355 | 10.0 | 360 | 0.1457 | 58.1478 | | 0.0299 | 11.0 | 396 | 0.1547 | 57.7916 | | 0.0183 | 12.0 | 432 | 0.1543 | 54.3633 | | 0.0131 | 13.0 | 468 | 0.1532 | 54.1407 | | 0.011 | 14.0 | 504 | 0.1604 | 53.8736 | | 0.0083 | 15.0 | 540 | 0.1630 | 54.0516 | | 0.0042 | 16.0 | 576 | 0.1711 | 52.1371 | | 0.0034 | 17.0 | 612 | 0.1670 | 52.5824 | | 0.0022 | 18.0 | 648 | 0.1649 | 52.5378 | | 0.0013 | 19.0 | 684 | 0.1802 | 52.1817 | | 0.0014 | 20.0 | 720 | 0.1820 | 53.1612 | | 0.002 | 21.0 | 756 | 0.1792 | 52.7159 | | 0.0016 | 22.0 | 792 | 0.1796 | 50.7124 | | 0.0004 | 23.0 | 828 | 0.1803 | 50.4007 | | 0.0003 | 24.0 | 864 | 0.1804 | 49.4657 | | 0.0001 | 25.0 | 900 | 0.1819 | 49.2431 | | 0.0 | 26.0 | 936 | 0.1857 | 49.0205 | | 0.0 | 27.0 | 972 | 0.1879 | 49.1541 | | 0.0 | 28.0 | 1008 | 0.1893 | 49.1095 | | 0.0 | 29.0 | 1044 | 0.1901 | 49.1095 | | 0.0 | 30.0 | 1080 | 0.1904 | 49.0650 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.15.1