ppo-LunarLander-v2 / config.json
ciccioz's picture
Upload PPO LunarLander-v2 trained agent
82c9990 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b7e75073f40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b7e7507c040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b7e7507c0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b7e7507c160>", "_build": "<function ActorCriticPolicy._build at 0x7b7e7507c1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7b7e7507c280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b7e7507c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b7e7507c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b7e7507c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b7e7507c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b7e7507c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b7e7507c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b7e7501a0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722084148579296487, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFgmg76RKFu9jffHvJnmj7sDcLs+xUdMPAAAgD8AAAAA7XAfPhn7gD/qeo4+/pD+vm0INz5SBT67AAAAAAAAAABAbmE+ek4CP/6QFL5m6KC+5HmUPdoq0L0AAAAAAAAAAOZQUj1oVZo/b72IPi8zC795xKI90qE5PgAAAAAAAAAAZochvW8CLT3wqNO9rCgqvnGjS7208Cw9AAAAAAAAAACa6YG7kGugPv4Hz7hsFZO+L0xaPbQbHb0AAAAAAAAAANoRkL1k5Z0+TWNsPmbDl75gh3o9dft4PQAAAAAAAAAA2rBYvvT7VT/CM6Y8ymmqvuLCob6+o1g+AAAAAAAAAABNRAO94X7kup6UKzzzWwY9zIewvFqy4j0AAIA/AACAPwAbP71WobQ/Qiecvi+VML5T63C9+C84vgAAAAAAAAAA5jRRPb9WvT9mSoQ+nMWivfm0OL3mrZM7AAAAAAAAAACaGeU814V3uym3nr0Z4ZQ8GLirPJurfr0AAIA/AACAPyCjlT7mLQg/zQYDvhkKu74+MpQ9BLo5vgAAAAAAAAAAmkHIOxR8rLrM/4i5fJZztJ+ok7rNFZ04AACAPwAAgD9mqIi9aOSMPTaJ9DqMS1u+sv4ivQixZz0AAAAAAAAAAObA8z1cRkA73i2HvpXiur31tve8rm4dPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2n9OZb6gyMAWyUTQkBjAF0lEdAolK8aXKKYXV9lChoBkdAbvL2/SH/LmgHTRABaAhHQKJTNLW7OFB1fZQoaAZHQHGOYdZJTVFoB0vuaAhHQKJTTkWAPNF1fZQoaAZHQHIdYOlO45NoB0v+aAhHQKJTxFId2gZ1fZQoaAZHQG0SrbYbsGBoB00oAWgIR0CiU9nNxEORdX2UKGgGR0BvnxqVQhwEaAdL6WgIR0CiVCZ2ZApsdX2UKGgGR0Bvp9qk/KQraAdNBwFoCEdAolQ1ZeRgZ3V9lChoBkdAb6yB91EE1WgHTQsBaAhHQKJUjOVPepJ1fZQoaAZHQHByA1R+BpZoB00OAWgIR0CiVYMHbAUMdX2UKGgGR0BztI+HJtBOaAdL/WgIR0CiVeWJ79hrdX2UKGgGR0BxRf4xk/bCaAdNGQFoCEdAolat6cAimnV9lChoBkdAY+zeQdS2pmgHTegDaAhHQKJW1aEi+td1fZQoaAZHQHJ/0YbbUPRoB00BAWgIR0CiVtYYR/VidX2UKGgGR0Bxx8S00FbFaAdNFAFoCEdAolebGcWj5HV9lChoBkdAcIQSBK+SKWgHTRQBaAhHQKJXtTuv2Xd1fZQoaAZHQGwKGO2iL2poB00PAWgIR0CiWJ1kUbkwdX2UKGgGR0BvOhnQID5kaAdNMAFoCEdAoljMvRJEpnV9lChoBkdAceYq7Ackt2gHTTUBaAhHQKJYzTKDCgt1fZQoaAZHQHEUHeenQ6ZoB00kAWgIR0CiWO2fTTfBdX2UKGgGR0BaLrgn+hoNaAdN6ANoCEdAoljst7KJVXV9lChoBkdAcQTFn7Hhj2gHTR4BaAhHQKJZNt1IRRN1fZQoaAZHQHGbIikfs/poB0vRaAhHQKJZVUMG5c11fZQoaAZHQHHGeOwPiDNoB03+AWgIR0CiWcL1EmY0dX2UKGgGR0BweY+FDfFaaAdNGgFoCEdAoln8Suhbn3V9lChoBkdAcBV0a6z3RGgHS/9oCEdAolqxeZ5Rj3V9lChoBkdAbnu/GlyimGgHTSoBaAhHQKJbnHDJlrd1fZQoaAZHQE0Hy3kPtlZoB0vGaAhHQKJb/yz5XU91fZQoaAZHQHB4/CdjG1hoB00UAWgIR0CiXFnFHavidX2UKGgGR0BzGwNI9TxYaAdNHAFoCEdAolxhusLfDXV9lChoBkdAccc31BdD6WgHTVUBaAhHQKJcaKekHlh1fZQoaAZHQHCpwx8D0UZoB0vbaAhHQKJdQAI6bON1fZQoaAZHQG4c9YfW+XZoB00OAWgIR0CiXVa90zTGdX2UKGgGR0BxS0g7o0Q9aAdL6WgIR0CiXVx6Ww/xdX2UKGgGR0BvUFEiMYMwaAdNDQFoCEdAol2It16mf3V9lChoBkdAcqKCa7VawGgHTQ0BaAhHQKJdrQZXMhZ1fZQoaAZHQHBrQmE4//xoB00pAWgIR0CiXjlFtsN2dX2UKGgGR0BwlGFev6j4aAdL/GgIR0CiXpVnEl3RdX2UKGgGR0BxHPu4PPLQaAdNMgFoCEdAomAiAlOXV3V9lChoBkdAY2ElWwNb1WgHTegDaAhHQKJgKOd5IH11fZQoaAZHQHKSYZVGTcJoB00MAWgIR0CiaVxbSqlxdX2UKGgGR0BvmPNC7btaaAdL4mgIR0CiaedORDCxdX2UKGgGR0BxpY5cTrVwaAdNDAFoCEdAomoCV6eGwnV9lChoBkdAcEjVo6CDmWgHTQEBaAhHQKJqGtDD0lJ1fZQoaAZHQHGRnh0hePdoB0v2aAhHQKJqKhGH58B1fZQoaAZHQHHdygGr0atoB00JAWgIR0CianI7vG6xdX2UKGgGR0Bwkdoi9qUNaAdL+GgIR0CiavamoBJadX2UKGgGR0Bx0lOnEVFhaAdNCQFoCEdAomsFaW5Yo3V9lChoBkdAcKELDQ7cPGgHTQgBaAhHQKJrD9R77bd1fZQoaAZHQHIusYl6Z6VoB00YAWgIR0Cia0kGiYb9dX2UKGgGR0BxselMyrPuaAdNEQFoCEdAomtmsq8UVXV9lChoBkdAYoIE6DGtIWgHTegDaAhHQKJrfb212JV1fZQoaAZHQHIqz7ALy+ZoB00VAWgIR0Cia8W4d6sydX2UKGgGR0BxkfK4hEBsaAdNNwFoCEdAomxyASWZ7XV9lChoBkdAcQB43WFvh2gHS/5oCEdAomyiab4Ju3V9lChoBkdAbpjbj94u9WgHTQUBaAhHQKJsvNFBppN1fZQoaAZHQHBgUZaV2RtoB00UAWgIR0CibR8rAgxKdX2UKGgGR0BudvikwevIaAdL+GgIR0CibVreyiVTdX2UKGgGR0BwsOgmJFb3aAdL/WgIR0CibaD4HoovdX2UKGgGR0BvTixzJZGKaAdNIgFoCEdAom3qfzz3AXV9lChoBkdAbUBar3j+72gHTRsBaAhHQKJt//kNnXd1fZQoaAZHQHB+vcrRSgpoB0v7aAhHQKJubxbSqlx1fZQoaAZHQHFSOSr5qM5oB0v8aAhHQKJugQJ5VwR1fZQoaAZHQG6PSPMjeKtoB00nAWgIR0CibomKqGUOdX2UKGgGR0BxGFqh11W9aAdNAgFoCEdAom7XvUjLS3V9lChoBkdAb/LJMg2ZRmgHTQQBaAhHQKJvFRl6JIl1fZQoaAZHQHFG//NqxkdoB00ZAWgIR0Cib0gjhUBGdX2UKGgGR0BxgQA0bcXWaAdNAgFoCEdAom9mjua4MHV9lChoBkdAc3BE9dNWVGgHTTwBaAhHQKJvaofCAMF1fZQoaAZHQHFfhGlQ/HJoB0v3aAhHQKJv7A/s3Q51fZQoaAZHQHIALPdEb5xoB0v+aAhHQKJwMml67d11fZQoaAZHQHDe3jlxOtZoB00KAWgIR0CicHiRGMGYdX2UKGgGR0BwbZ1r6+FlaAdL52gIR0CicMr7wazedX2UKGgGR0BxwBNlAeJYaAdNDwFoCEdAonDu7J4jbHV9lChoBkdAb/AiGnGbTmgHTQEBaAhHQKJxbr2QGOd1fZQoaAZHQHK/te6Zpi9oB008AWgIR0CiccoZqEeydX2UKGgGR0Bxj+Yx+KCQaAdNBgFoCEdAonINGoaUA3V9lChoBkdAc0iCOmzjWGgHTTQBaAhHQKJySysS00F1fZQoaAZHQG/mR/EwWWRoB00dAWgIR0CicnhJqZc+dX2UKGgGR0Bs8cN8VpK0aAdL92gIR0CicoqQJXyRdX2UKGgGR0BydLjDKoycaAdNIQFoCEdAonKOjEehf3V9lChoBkdAb9U2bXpW3mgHS+5oCEdAonK4TXarWHV9lChoBkdAb4t3XZoPCmgHTTEBaAhHQKJzEvnKW9l1fZQoaAZHQHCWL+kxh2JoB00aAWgIR0Cicy++23KCdX2UKGgGR0BxSh1ie/YbaAdNNwFoCEdAonO0/SpiqnV9lChoBkdAcSl7lq8DjmgHTQQBaAhHQKJz1p9qk/N1fZQoaAZHQHEG7wrlNlBoB00lAWgIR0Cic/6Ss8xLdX2UKGgGR0ByfEh7mdRSaAdNBwFoCEdAonSkxM36ynV9lChoBkdAcn8GLDQ7cWgHS9VoCEdAonTXAGjbjHV9lChoBkdAcqiGrS3LFGgHTR8BaAhHQKJ07WtEG7l1fZQoaAZHQHHPZPykKu1oB0v9aAhHQKJ1IX5WRzR1fZQoaAZHQHGccrAgxJxoB01CAWgIR0CidSG8/UvxdX2UKGgGR0BQ6UpVjqfOaAdL8WgIR0Cide+fywwCdX2UKGgGR0BxTcJiRW92aAdNDAFoCEdAonYlnVXmvHV9lChoBkdAcLv7P6be/GgHTQ0BaAhHQKJ2yDzRQad1fZQoaAZHQHHxdMwlByFoB00HAWgIR0CidvND2JzldX2UKGgGR0Bt9Xub7TDwaAdNMgFoCEdAond1SZSeiHV9lChoBkdAb3sp+c6Nl2gHTQ8BaAhHQKJ33PM0P6N1fZQoaAZHQHIbUG3WnTBoB00tAWgIR0CieFYvN/vwdX2UKGgGR0BxZAcBEKE4aAdL9mgIR0CieFx/3FkydX2UKGgGR0BxR/Bj4HopaAdNAwFoCEdAonhxIDoyK3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}