hpprc commited on
Commit
0919620
1 Parent(s): c56d079

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -32,7 +32,7 @@ Then you can use the model like this:
32
  from sentence_transformers import SentenceTransformer
33
  sentences = ["こんにちは、世界!", "文埋め込み最高!文埋め込み最高と叫びなさい", "極度乾燥しなさい"]
34
 
35
- model = SentenceTransformer("unsup-simcse-ja-large")
36
  embeddings = model.encode(sentences)
37
  print(embeddings)
38
  ```
@@ -55,8 +55,8 @@ def cls_pooling(model_output, attention_mask):
55
  sentences = ['This is an example sentence', 'Each sentence is converted']
56
 
57
  # Load model from HuggingFace Hub
58
- tokenizer = AutoTokenizer.from_pretrained("unsup-simcse-ja-large")
59
- model = AutoModel.from_pretrained("unsup-simcse-ja-large")
60
 
61
  # Tokenize sentences
62
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
32
  from sentence_transformers import SentenceTransformer
33
  sentences = ["こんにちは、世界!", "文埋め込み最高!文埋め込み最高と叫びなさい", "極度乾燥しなさい"]
34
 
35
+ model = SentenceTransformer("cl-nagoya/unsup-simcse-ja-large")
36
  embeddings = model.encode(sentences)
37
  print(embeddings)
38
  ```
 
55
  sentences = ['This is an example sentence', 'Each sentence is converted']
56
 
57
  # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained("cl-nagoya/unsup-simcse-ja-large")
59
+ model = AutoModel.from_pretrained("cl-nagoya/unsup-simcse-ja-large")
60
 
61
  # Tokenize sentences
62
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')