Update README.md
Browse files
README.md
CHANGED
@@ -9,27 +9,24 @@ datasets:
|
|
9 |
- wiki40b
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
|
14 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
-
|
16 |
-
<!--- Describe your model here -->
|
17 |
|
18 |
## Usage (Sentence-Transformers)
|
19 |
|
20 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
|
22 |
```
|
23 |
-
pip install -U sentence-transformers
|
24 |
```
|
25 |
|
26 |
Then you can use the model like this:
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
-
sentences = ["
|
31 |
|
32 |
-
model = SentenceTransformer(
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
@@ -52,8 +49,8 @@ def cls_pooling(model_output, attention_mask):
|
|
52 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
53 |
|
54 |
# Load model from HuggingFace Hub
|
55 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
56 |
-
model = AutoModel.from_pretrained(
|
57 |
|
58 |
# Tokenize sentences
|
59 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -69,24 +66,24 @@ print("Sentence embeddings:")
|
|
69 |
print(sentence_embeddings)
|
70 |
```
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
## Evaluation Results
|
75 |
-
|
76 |
-
<!--- Describe how your model was evaluated -->
|
77 |
-
|
78 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
## Full Model Architecture
|
83 |
```
|
84 |
SentenceTransformer(
|
85 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
86 |
-
(1): Pooling({'word_embedding_dimension':
|
87 |
)
|
88 |
```
|
89 |
|
90 |
## Citing & Authors
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- wiki40b
|
10 |
---
|
11 |
|
12 |
+
# unsup-simcse-ja-large
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
## Usage (Sentence-Transformers)
|
16 |
|
17 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
|
19 |
```
|
20 |
+
pip install -U fugashi[unidic-lite] sentence-transformers
|
21 |
```
|
22 |
|
23 |
Then you can use the model like this:
|
24 |
|
25 |
```python
|
26 |
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["こんにちは、世界!", "文埋め込み最高!文埋め込み最高と叫びなさい", "極度乾燥しなさい"]
|
28 |
|
29 |
+
model = SentenceTransformer("unsup-simcse-ja-large")
|
30 |
embeddings = model.encode(sentences)
|
31 |
print(embeddings)
|
32 |
```
|
|
|
49 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
50 |
|
51 |
# Load model from HuggingFace Hub
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("unsup-simcse-ja-large")
|
53 |
+
model = AutoModel.from_pretrained("unsup-simcse-ja-large")
|
54 |
|
55 |
# Tokenize sentences
|
56 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
66 |
print(sentence_embeddings)
|
67 |
```
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
## Full Model Architecture
|
70 |
```
|
71 |
SentenceTransformer(
|
72 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
73 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
74 |
)
|
75 |
```
|
76 |
|
77 |
## Citing & Authors
|
78 |
|
79 |
+
```
|
80 |
+
@misc{
|
81 |
+
hayato-tsukagoshi-2023-simple-simcse-ja,
|
82 |
+
author = {Hayato Tsukagoshi},
|
83 |
+
title = {Japanese Simple-SimCSE},
|
84 |
+
year = {2023},
|
85 |
+
publisher = {GitHub},
|
86 |
+
journal = {GitHub repository},
|
87 |
+
howpublished = {\url{https://github.com/hppRC/simple-simcse-ja}}
|
88 |
+
}
|
89 |
+
```
|