File size: 1,924 Bytes
d56c4d8
0c39b71
ca7c638
0c39b71
 
 
b7cb178
 
0c39b71
b7cb178
0c39b71
b7cb178
0c39b71
 
d56c4d8
 
ca7c638
d56c4d8
d1129ef
ca7c638
 
d56c4d8
 
 
d1129ef
85ae6ec
d56c4d8
ca7c638
d56c4d8
 
ca7c638
d56c4d8
4fd8dae
 
 
 
 
 
d56c4d8
ca7c638
3b17562
 
 
 
 
 
 
 
92932d6
3b17562
 
 
 
 
 
 
 
 
 
 
b7cb178
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: zeroshot_classifier
tags:
  - transformers
  - sentence-transformers
  - zeroshot_classifier
license: mit
datasets:
  - claritylab/UTCD
language:
  - en
pipeline_tag: zero-shot-classification
metrics:
  - accuracy
---

# Zero-shot Vanilla Binary BERT 

This is a BERT model. 
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***. 
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master). 

## Model description

This model is intended for zero-shot text classification. 
It was trained under the binary classification framework as a baseline with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset. 

- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)


## Usage

Install our [python package](https://pypi.org/project/zeroshot-classifier/): 
```bash
pip install zeroshot-classifier
```

Then, you can use the model like this:

```python
>>> from zeroshot_classifier.models import BinaryBertCrossEncoder
>>> model = BinaryBertCrossEncoder(model_name='claritylab/zero-shot-vanilla-binary-bert')

>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>>     'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>>     'Search Screening Event'
>>> ]

>>> query = [[text, lb] for lb in labels]
>>> logits = model.predict(query, apply_softmax=True)
>>> print(logits)

[[1.1909954e-04 9.9988091e-01]
 [9.9997509e-01 2.4927122e-05]
 [9.9997497e-01 2.5082643e-05]
 [2.4483365e-04 9.9975520e-01]
 [9.9996781e-01 3.2211588e-05]
 [9.9985993e-01 1.4002046e-04]
 [9.9976152e-01 2.3845369e-04]]
```