File size: 1,924 Bytes
d56c4d8 0c39b71 ca7c638 0c39b71 b7cb178 0c39b71 b7cb178 0c39b71 b7cb178 0c39b71 d56c4d8 ca7c638 d56c4d8 d1129ef ca7c638 d56c4d8 d1129ef 85ae6ec d56c4d8 ca7c638 d56c4d8 ca7c638 d56c4d8 4fd8dae d56c4d8 ca7c638 3b17562 92932d6 3b17562 b7cb178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: zeroshot_classifier
tags:
- transformers
- sentence-transformers
- zeroshot_classifier
license: mit
datasets:
- claritylab/UTCD
language:
- en
pipeline_tag: zero-shot-classification
metrics:
- accuracy
---
# Zero-shot Vanilla Binary BERT
This is a BERT model.
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***.
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
## Model description
This model is intended for zero-shot text classification.
It was trained under the binary classification framework as a baseline with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset.
- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)
## Usage
Install our [python package](https://pypi.org/project/zeroshot-classifier/):
```bash
pip install zeroshot-classifier
```
Then, you can use the model like this:
```python
>>> from zeroshot_classifier.models import BinaryBertCrossEncoder
>>> model = BinaryBertCrossEncoder(model_name='claritylab/zero-shot-vanilla-binary-bert')
>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>> 'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>> 'Search Screening Event'
>>> ]
>>> query = [[text, lb] for lb in labels]
>>> logits = model.predict(query, apply_softmax=True)
>>> print(logits)
[[1.1909954e-04 9.9988091e-01]
[9.9997509e-01 2.4927122e-05]
[9.9997497e-01 2.5082643e-05]
[2.4483365e-04 9.9975520e-01]
[9.9996781e-01 3.2211588e-05]
[9.9985993e-01 1.4002046e-04]
[9.9976152e-01 2.3845369e-04]]
``` |