Upload PPO LunarLander-v2 1M trained agent
Browse files- README.md +35 -1
- config.json +1 -0
- ppo_lunar_lander_1M.zip +2 -2
- ppo_lunar_lander_1M/_stable_baselines3_version +1 -0
- ppo_lunar_lander_1M/data +94 -0
- ppo_lunar_lander_1M/policy.optimizer.pth +3 -0
- ppo_lunar_lander_1M/policy.pth +3 -0
- ppo_lunar_lander_1M/pytorch_variables.pth +3 -0
- ppo_lunar_lander_1M/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.60 +/- 43.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcf2e275e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcf2e27670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcf2e27700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcf2e27790>", "_build": "<function ActorCriticPolicy._build at 0x7fbcf2e27820>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcf2e278b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcf2e27940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcf2e279d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcf2e27a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcf2e27af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcf2e27b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcf2e1de70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670781751866373490, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPku70pZBy6p+CiurPttbX+4+Y6ggy8OQAAgD8AAIA/mgPTvbnJZz9OoLw9XRvMvhF80rxtUAQ+AAAAAAAAAADNFzU9uQdxPmLE5r3taeC98U2ivUmgBjwAAAAAAAAAADNjgbsfBf63eLLeuvecFDVvP/c5yuwEOgAAgD8AAIA/TaaUPeFgmbr1xzQ8TY2OtJ18FLnQh0azAACAPwAAgD8z68G97Inbuecoj7nETUa04y8buid0pTgAAIA/AACAP+bJkL2FPe+7hp0YvHtyAT3/7EK94znUPQAAgD8AAIA/GitbPVzfULq3bDA7CcgSNTnd8jr1k0m6AACAPwAAgD+zEXQ97PnRuXu8krvUPMw42zdAu6j6GjoAAIA/AACAPz1iYb4zH14/z35BvZSDr74h2x2+iMPRPAAAAAAAAAAAzUWJvFwLXroxwKU4cwHDNWoKi7sPhr+3AACAPwAAgD9T2zG++2qOvONjg7vWvMW5pa7/PTrarzoAAIA/AACAP2algzyFK8i5Ne8bO3FktDXOUsK7Wty5NAAAgD8AAIA/mlZ6vXs2grqVF+W6FKHFN9l4arot4Ng3AACAPwAAgD+A4Sg99mxRurpBMryJCbC2IGBRusolITYAAIA/AACAP0CBOT78Oyw/hsklPV6hjb5J8ok94slhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKTfvg5SQ0CUhpRSlIwBbJRL1YwBdJRHQJBWzI/7iyZ1fZQoaAZoCWgPQwhYU1kUdp0/QJSGlFKUaBVL8GgWR0CQW2y4Wk8BdX2UKGgGaAloD0MITn6LTpaMXECUhpRSlGgVTegDaBZHQJBgQDifg751fZQoaAZoCWgPQwj9bOS6qTdlQJSGlFKUaBVN6ANoFkdAkGSgh8pkPXV9lChoBmgJaA9DCKYol8Yv9WBAlIaUUpRoFU3oA2gWR0CQZ2H+ZPVNdX2UKGgGaAloD0MIY/GbwsqCZUCUhpRSlGgVTegDaBZHQJBov+MqBmR1fZQoaAZoCWgPQwg17zhFR9tiQJSGlFKUaBVN6ANoFkdAkG9R3V09yXV9lChoBmgJaA9DCBxhURGnLznAlIaUUpRoFUvlaBZHQJBwfi5uqFR1fZQoaAZoCWgPQwjnNXaJaqxkQJSGlFKUaBVN6ANoFkdAkHFcgZCOWHV9lChoBmgJaA9DCAt+G2I8IWNAlIaUUpRoFU3oA2gWR0CQcoL9deIEdX2UKGgGaAloD0MI2xMktjsSYUCUhpRSlGgVTegDaBZHQJB1Dnq3VkN1fZQoaAZoCWgPQwhVoYFYtitkQJSGlFKUaBVN6ANoFkdAkHW1Sn+AE3V9lChoBmgJaA9DCDD2XnzRIVxAlIaUUpRoFU3oA2gWR0CQd8Gmk30gdX2UKGgGaAloD0MIuB/wwABvY0CUhpRSlGgVTegDaBZHQJB4alenhsJ1fZQoaAZoCWgPQwisxhLWRm5hQJSGlFKUaBVN6ANoFkdAkHnoNAkcCHV9lChoBmgJaA9DCNPddTZkIWFAlIaUUpRoFU3oA2gWR0CQfUFPBSDRdX2UKGgGaAloD0MI02weh8HcAkCUhpRSlGgVS71oFkdAkH75RXOnmHV9lChoBmgJaA9DCLLV5ZQAhWFAlIaUUpRoFU3oA2gWR0CQlDQoTfzjdX2UKGgGaAloD0MIVaTC2EIyQUCUhpRSlGgVTQQBaBZHQJCUQ6EJ0GN1fZQoaAZoCWgPQwiVRzfCIqRiQJSGlFKUaBVN6ANoFkdAkJ2ZMxoIwHV9lChoBmgJaA9DCJ6ymq4n3VtAlIaUUpRoFU3oA2gWR0CQos8yvcJudX2UKGgGaAloD0MIDag3o+ZzYkCUhpRSlGgVTegDaBZHQJCoRnOB19x1fZQoaAZoCWgPQwjl7QinBX5uQJSGlFKUaBVNxAFoFkdAkKtklu3tr3V9lChoBmgJaA9DCAVqMXiYvVtAlIaUUpRoFU3oA2gWR0CQsExD9fkWdX2UKGgGaAloD0MIvJaQD3oHYkCUhpRSlGgVTegDaBZHQJCx3LU1AJN1fZQoaAZoCWgPQwgPR1fp7rRjQJSGlFKUaBVN6ANoFkdAkLiQgs9SuXV9lChoBmgJaA9DCHO9baZCAmBAlIaUUpRoFU3oA2gWR0CQubq3VkMDdX2UKGgGaAloD0MIRxyygXRcZUCUhpRSlGgVTegDaBZHQJC6lddE9dN1fZQoaAZoCWgPQwhrKovCLqtiQJSGlFKUaBVN6ANoFkdAkLumsJY1YXV9lChoBmgJaA9DCIY5QZsc4V9AlIaUUpRoFU3oA2gWR0CQwJ9zOopAdX2UKGgGaAloD0MI+u/Ba5fcXkCUhpRSlGgVTegDaBZHQJDBTnoxHoZ1fZQoaAZoCWgPQwgmcyzvKh1hQJSGlFKUaBVN6ANoFkdAkMLoZuQ6qHV9lChoBmgJaA9DCCrkSj0Lg2JAlIaUUpRoFU3oA2gWR0CQxmLLpzLfdX2UKGgGaAloD0MI5eyd0VZ9Y0CUhpRSlGgVTegDaBZHQJDdTd9Dx9Z1fZQoaAZoCWgPQwijHTf8btNmQJSGlFKUaBVN6ANoFkdAkN1f7vXsgXV9lChoBmgJaA9DCDYjg9xFikFAlIaUUpRoFUvQaBZHQJDeJc7hegN1fZQoaAZoCWgPQwi6nui68N9CQJSGlFKUaBVNOwFoFkdAkOMOYx+KCXV9lChoBmgJaA9DCOAruvWabGBAlIaUUpRoFU3oA2gWR0CQ5h9LHuJDdX2UKGgGaAloD0MIYY2z6QhJZUCUhpRSlGgVTegDaBZHQJDq61MM7U51fZQoaAZoCWgPQwj3eCEdHoVfQJSGlFKUaBVN6ANoFkdAkPASWJJoTXV9lChoBmgJaA9DCIyd8BIcyGZAlIaUUpRoFU3oA2gWR0CQ8zu7HyVfdX2UKGgGaAloD0MIQrRWtDm9YUCUhpRSlGgVTegDaBZHQJD4KvvBrN51fZQoaAZoCWgPQwgDXJAtSxhjQJSGlFKUaBVN6ANoFkdAkPnaJ/G2kXV9lChoBmgJaA9DCMObNXhfrmNAlIaUUpRoFU3oA2gWR0CRAckQf6oEdX2UKGgGaAloD0MItVNzucFEYUCUhpRSlGgVTegDaBZHQJEDRj6N2kl1fZQoaAZoCWgPQwhz843onqNfQJSGlFKUaBVN6ANoFkdAkQRZYYBNmHV9lChoBmgJaA9DCKeWrfXF7GBAlIaUUpRoFU3oA2gWR0CRBblpXZGsdX2UKGgGaAloD0MIoDTUKCRZZkCUhpRSlGgVTegDaBZHQJEOzzXjENx1fZQoaAZoCWgPQwhVFoVdlLBhQJSGlFKUaBVN6ANoFkdAkRNwT238XXV9lChoBmgJaA9DCGCPiZRmNWNAlIaUUpRoFU3oA2gWR0CRGZfDDTBqdX2UKGgGaAloD0MIrz+Jz52rXkCUhpRSlGgVTegDaBZHQJEZqGgzxgB1fZQoaAZoCWgPQwibyw2GuhZmQJSGlFKUaBVN6ANoFkdAkRqej/MnqnV9lChoBmgJaA9DCN0/FqJDbV9AlIaUUpRoFU3oA2gWR0CRMrxoqTbGdX2UKGgGaAloD0MINL3EWCZ3YUCUhpRSlGgVTegDaBZHQJE2U3GXHBF1fZQoaAZoCWgPQwjYutQIfaJlQJSGlFKUaBVN6ANoFkdAkTu5gCwKSnV9lChoBmgJaA9DCKBTkJ+N7WNAlIaUUpRoFU3oA2gWR0CRQS7tAs06dX2UKGgGaAloD0MIE/JBz+b6YkCUhpRSlGgVTegDaBZHQJFEbXPJJXh1fZQoaAZoCWgPQwiQpKSHoW5mQJSGlFKUaBVN6ANoFkdAkUl4fOlfq3V9lChoBmgJaA9DCOV620wFkWNAlIaUUpRoFU3oA2gWR0CRSy8Gs3hodX2UKGgGaAloD0MIZqNzfgrkZUCUhpRSlGgVTegDaBZHQJFTGF9KEnN1fZQoaAZoCWgPQwgIH0q05JVfQJSGlFKUaBVN6ANoFkdAkVSN6cAimnV9lChoBmgJaA9DCB9LH7qgn2FAlIaUUpRoFU3oA2gWR0CRVZiS7oStdX2UKGgGaAloD0MIrptSXiskYUCUhpRSlGgVTegDaBZHQJFW9xgiNbV1fZQoaAZoCWgPQwgCDMuf7y1iQJSGlFKUaBVN6ANoFkdAkV+qfWcz7HV9lChoBmgJaA9DCGLboswGIGFAlIaUUpRoFU3oA2gWR0CRY8AmReTndX2UKGgGaAloD0MIJetwdJVkZUCUhpRSlGgVTegDaBZHQJFpPM4cWCV1fZQoaAZoCWgPQwiVRPZBFi5iQJSGlFKUaBVN6ANoFkdAkWlL61stTXV9lChoBmgJaA9DCCRfCaTEkGBAlIaUUpRoFU3oA2gWR0CRah+qBErodX2UKGgGaAloD0MI7YDripkrYkCUhpRSlGgVTegDaBZHQJGBvAFgUlB1fZQoaAZoCWgPQwjsFoGxvr9dQJSGlFKUaBVN6ANoFkdAkYTpswco6XV9lChoBmgJaA9DCO9WlugshGRAlIaUUpRoFU3oA2gWR0CRiebF0gbIdX2UKGgGaAloD0MIBduIJ7tSY0CUhpRSlGgVTegDaBZHQJGPBxMnJDF1fZQoaAZoCWgPQwi+TurLUjdhQJSGlFKUaBVN6ANoFkdAkZIGixmkFnV9lChoBmgJaA9DCE890uA2jmVAlIaUUpRoFU3oA2gWR0CRlogyM1jzdX2UKGgGaAloD0MIH0yKj88JZkCUhpRSlGgVTegDaBZHQJGYBBX0Xgt1fZQoaAZoCWgPQwh47j1c8sZkQJSGlFKUaBVN6ANoFkdAkZ+BtP557nV9lChoBmgJaA9DCBJnRdREpWBAlIaUUpRoFU3oA2gWR0CRoO1RceKbdX2UKGgGaAloD0MIm6p7ZHP+YUCUhpRSlGgVTegDaBZHQJGh79tMwlB1fZQoaAZoCWgPQwjImSZsv+NhQJSGlFKUaBVN6ANoFkdAkaM9fw7T2HV9lChoBmgJaA9DCAHcLF4saGVAlIaUUpRoFU3oA2gWR0CRrDU6gdwOdX2UKGgGaAloD0MIxqS/l0J8YUCUhpRSlGgVTegDaBZHQJGw1hz/6wd1fZQoaAZoCWgPQwiAC7Jl+UBjQJSGlFKUaBVN6ANoFkdAkbbUyYXwb3V9lChoBmgJaA9DCCy8y0V8u2RAlIaUUpRoFU3oA2gWR0CRtuT3IuGsdX2UKGgGaAloD0MIVryReeTlZ0CUhpRSlGgVTegDaBZHQJG3y8xsVL11fZQoaAZoCWgPQwjpKAezCapmQJSGlFKUaBVN6ANoFkdAkc/cBEKE4HV9lChoBmgJaA9DCOwYV1ycdGZAlIaUUpRoFU3oA2gWR0CR04G2kSEldX2UKGgGaAloD0MISWb1DjdBZ0CUhpRSlGgVTegDaBZHQJHZJEG7jDN1fZQoaAZoCWgPQwiuZTIcT9diQJSGlFKUaBVN6ANoFkdAkd8b3sXzlXV9lChoBmgJaA9DCL/WpUZogGNAlIaUUpRoFU3oA2gWR0CR4pxQzk6tdX2UKGgGaAloD0MI9WT+0bdpYUCUhpRSlGgVTegDaBZHQJHn8LG7z091fZQoaAZoCWgPQwgjumddo/ViQJSGlFKUaBVN6ANoFkdAkenLr5ZbIXV9lChoBmgJaA9DCFplprT+Z19AlIaUUpRoFU3oA2gWR0CR8hV6/qPfdX2UKGgGaAloD0MI04bD0kCJY0CUhpRSlGgVTegDaBZHQJHzjb9If8x1fZQoaAZoCWgPQwjPEfkupZdfQJSGlFKUaBVN6ANoFkdAkfSjWXkYGnV9lChoBmgJaA9DCNcxrri4F2RAlIaUUpRoFU3oA2gWR0CR9gFajesQdX2UKGgGaAloD0MIdvnWh3UKYECUhpRSlGgVTegDaBZHQJH+f2ugYgt1fZQoaAZoCWgPQwiH4SNiyg9hQJSGlFKUaBVN6ANoFkdAkgKljmSyMXV9lChoBmgJaA9DCKbVkLhHvmJAlIaUUpRoFU3oA2gWR0CSB/X+l0o0dX2UKGgGaAloD0MI4IEBhI/9YkCUhpRSlGgVTegDaBZHQJIIBanrIHV1fZQoaAZoCWgPQwhfXRWoxWVlQJSGlFKUaBVN6ANoFkdAkgjS704BFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar_lander_1M.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76028ca3be95dd1ae0a89406bfb72ed58e9b150ed9e88b3312781d3998ee7c2a
|
3 |
+
size 147214
|
ppo_lunar_lander_1M/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo_lunar_lander_1M/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcf2e275e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcf2e27670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcf2e27700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcf2e27790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbcf2e27820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbcf2e278b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcf2e27940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbcf2e279d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcf2e27a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcf2e27af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcf2e27b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbcf2e1de70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670781751866373490,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPku70pZBy6p+CiurPttbX+4+Y6ggy8OQAAgD8AAIA/mgPTvbnJZz9OoLw9XRvMvhF80rxtUAQ+AAAAAAAAAADNFzU9uQdxPmLE5r3taeC98U2ivUmgBjwAAAAAAAAAADNjgbsfBf63eLLeuvecFDVvP/c5yuwEOgAAgD8AAIA/TaaUPeFgmbr1xzQ8TY2OtJ18FLnQh0azAACAPwAAgD8z68G97Inbuecoj7nETUa04y8buid0pTgAAIA/AACAP+bJkL2FPe+7hp0YvHtyAT3/7EK94znUPQAAgD8AAIA/GitbPVzfULq3bDA7CcgSNTnd8jr1k0m6AACAPwAAgD+zEXQ97PnRuXu8krvUPMw42zdAu6j6GjoAAIA/AACAPz1iYb4zH14/z35BvZSDr74h2x2+iMPRPAAAAAAAAAAAzUWJvFwLXroxwKU4cwHDNWoKi7sPhr+3AACAPwAAgD9T2zG++2qOvONjg7vWvMW5pa7/PTrarzoAAIA/AACAP2algzyFK8i5Ne8bO3FktDXOUsK7Wty5NAAAgD8AAIA/mlZ6vXs2grqVF+W6FKHFN9l4arot4Ng3AACAPwAAgD+A4Sg99mxRurpBMryJCbC2IGBRusolITYAAIA/AACAP0CBOT78Oyw/hsklPV6hjb5J8ok94slhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKTfvg5SQ0CUhpRSlIwBbJRL1YwBdJRHQJBWzI/7iyZ1fZQoaAZoCWgPQwhYU1kUdp0/QJSGlFKUaBVL8GgWR0CQW2y4Wk8BdX2UKGgGaAloD0MITn6LTpaMXECUhpRSlGgVTegDaBZHQJBgQDifg751fZQoaAZoCWgPQwj9bOS6qTdlQJSGlFKUaBVN6ANoFkdAkGSgh8pkPXV9lChoBmgJaA9DCKYol8Yv9WBAlIaUUpRoFU3oA2gWR0CQZ2H+ZPVNdX2UKGgGaAloD0MIY/GbwsqCZUCUhpRSlGgVTegDaBZHQJBov+MqBmR1fZQoaAZoCWgPQwg17zhFR9tiQJSGlFKUaBVN6ANoFkdAkG9R3V09yXV9lChoBmgJaA9DCBxhURGnLznAlIaUUpRoFUvlaBZHQJBwfi5uqFR1fZQoaAZoCWgPQwjnNXaJaqxkQJSGlFKUaBVN6ANoFkdAkHFcgZCOWHV9lChoBmgJaA9DCAt+G2I8IWNAlIaUUpRoFU3oA2gWR0CQcoL9deIEdX2UKGgGaAloD0MI2xMktjsSYUCUhpRSlGgVTegDaBZHQJB1Dnq3VkN1fZQoaAZoCWgPQwhVoYFYtitkQJSGlFKUaBVN6ANoFkdAkHW1Sn+AE3V9lChoBmgJaA9DCDD2XnzRIVxAlIaUUpRoFU3oA2gWR0CQd8Gmk30gdX2UKGgGaAloD0MIuB/wwABvY0CUhpRSlGgVTegDaBZHQJB4alenhsJ1fZQoaAZoCWgPQwisxhLWRm5hQJSGlFKUaBVN6ANoFkdAkHnoNAkcCHV9lChoBmgJaA9DCNPddTZkIWFAlIaUUpRoFU3oA2gWR0CQfUFPBSDRdX2UKGgGaAloD0MI02weh8HcAkCUhpRSlGgVS71oFkdAkH75RXOnmHV9lChoBmgJaA9DCLLV5ZQAhWFAlIaUUpRoFU3oA2gWR0CQlDQoTfzjdX2UKGgGaAloD0MIVaTC2EIyQUCUhpRSlGgVTQQBaBZHQJCUQ6EJ0GN1fZQoaAZoCWgPQwiVRzfCIqRiQJSGlFKUaBVN6ANoFkdAkJ2ZMxoIwHV9lChoBmgJaA9DCJ6ymq4n3VtAlIaUUpRoFU3oA2gWR0CQos8yvcJudX2UKGgGaAloD0MIDag3o+ZzYkCUhpRSlGgVTegDaBZHQJCoRnOB19x1fZQoaAZoCWgPQwjl7QinBX5uQJSGlFKUaBVNxAFoFkdAkKtklu3tr3V9lChoBmgJaA9DCAVqMXiYvVtAlIaUUpRoFU3oA2gWR0CQsExD9fkWdX2UKGgGaAloD0MIvJaQD3oHYkCUhpRSlGgVTegDaBZHQJCx3LU1AJN1fZQoaAZoCWgPQwgPR1fp7rRjQJSGlFKUaBVN6ANoFkdAkLiQgs9SuXV9lChoBmgJaA9DCHO9baZCAmBAlIaUUpRoFU3oA2gWR0CQubq3VkMDdX2UKGgGaAloD0MIRxyygXRcZUCUhpRSlGgVTegDaBZHQJC6lddE9dN1fZQoaAZoCWgPQwhrKovCLqtiQJSGlFKUaBVN6ANoFkdAkLumsJY1YXV9lChoBmgJaA9DCIY5QZsc4V9AlIaUUpRoFU3oA2gWR0CQwJ9zOopAdX2UKGgGaAloD0MI+u/Ba5fcXkCUhpRSlGgVTegDaBZHQJDBTnoxHoZ1fZQoaAZoCWgPQwgmcyzvKh1hQJSGlFKUaBVN6ANoFkdAkMLoZuQ6qHV9lChoBmgJaA9DCCrkSj0Lg2JAlIaUUpRoFU3oA2gWR0CQxmLLpzLfdX2UKGgGaAloD0MI5eyd0VZ9Y0CUhpRSlGgVTegDaBZHQJDdTd9Dx9Z1fZQoaAZoCWgPQwijHTf8btNmQJSGlFKUaBVN6ANoFkdAkN1f7vXsgXV9lChoBmgJaA9DCDYjg9xFikFAlIaUUpRoFUvQaBZHQJDeJc7hegN1fZQoaAZoCWgPQwi6nui68N9CQJSGlFKUaBVNOwFoFkdAkOMOYx+KCXV9lChoBmgJaA9DCOAruvWabGBAlIaUUpRoFU3oA2gWR0CQ5h9LHuJDdX2UKGgGaAloD0MIYY2z6QhJZUCUhpRSlGgVTegDaBZHQJDq61MM7U51fZQoaAZoCWgPQwj3eCEdHoVfQJSGlFKUaBVN6ANoFkdAkPASWJJoTXV9lChoBmgJaA9DCIyd8BIcyGZAlIaUUpRoFU3oA2gWR0CQ8zu7HyVfdX2UKGgGaAloD0MIQrRWtDm9YUCUhpRSlGgVTegDaBZHQJD4KvvBrN51fZQoaAZoCWgPQwgDXJAtSxhjQJSGlFKUaBVN6ANoFkdAkPnaJ/G2kXV9lChoBmgJaA9DCMObNXhfrmNAlIaUUpRoFU3oA2gWR0CRAckQf6oEdX2UKGgGaAloD0MItVNzucFEYUCUhpRSlGgVTegDaBZHQJEDRj6N2kl1fZQoaAZoCWgPQwhz843onqNfQJSGlFKUaBVN6ANoFkdAkQRZYYBNmHV9lChoBmgJaA9DCKeWrfXF7GBAlIaUUpRoFU3oA2gWR0CRBblpXZGsdX2UKGgGaAloD0MIoDTUKCRZZkCUhpRSlGgVTegDaBZHQJEOzzXjENx1fZQoaAZoCWgPQwhVFoVdlLBhQJSGlFKUaBVN6ANoFkdAkRNwT238XXV9lChoBmgJaA9DCGCPiZRmNWNAlIaUUpRoFU3oA2gWR0CRGZfDDTBqdX2UKGgGaAloD0MIrz+Jz52rXkCUhpRSlGgVTegDaBZHQJEZqGgzxgB1fZQoaAZoCWgPQwibyw2GuhZmQJSGlFKUaBVN6ANoFkdAkRqej/MnqnV9lChoBmgJaA9DCN0/FqJDbV9AlIaUUpRoFU3oA2gWR0CRMrxoqTbGdX2UKGgGaAloD0MINL3EWCZ3YUCUhpRSlGgVTegDaBZHQJE2U3GXHBF1fZQoaAZoCWgPQwjYutQIfaJlQJSGlFKUaBVN6ANoFkdAkTu5gCwKSnV9lChoBmgJaA9DCKBTkJ+N7WNAlIaUUpRoFU3oA2gWR0CRQS7tAs06dX2UKGgGaAloD0MIE/JBz+b6YkCUhpRSlGgVTegDaBZHQJFEbXPJJXh1fZQoaAZoCWgPQwiQpKSHoW5mQJSGlFKUaBVN6ANoFkdAkUl4fOlfq3V9lChoBmgJaA9DCOV620wFkWNAlIaUUpRoFU3oA2gWR0CRSy8Gs3hodX2UKGgGaAloD0MIZqNzfgrkZUCUhpRSlGgVTegDaBZHQJFTGF9KEnN1fZQoaAZoCWgPQwgIH0q05JVfQJSGlFKUaBVN6ANoFkdAkVSN6cAimnV9lChoBmgJaA9DCB9LH7qgn2FAlIaUUpRoFU3oA2gWR0CRVZiS7oStdX2UKGgGaAloD0MIrptSXiskYUCUhpRSlGgVTegDaBZHQJFW9xgiNbV1fZQoaAZoCWgPQwgCDMuf7y1iQJSGlFKUaBVN6ANoFkdAkV+qfWcz7HV9lChoBmgJaA9DCGLboswGIGFAlIaUUpRoFU3oA2gWR0CRY8AmReTndX2UKGgGaAloD0MIJetwdJVkZUCUhpRSlGgVTegDaBZHQJFpPM4cWCV1fZQoaAZoCWgPQwiVRPZBFi5iQJSGlFKUaBVN6ANoFkdAkWlL61stTXV9lChoBmgJaA9DCCRfCaTEkGBAlIaUUpRoFU3oA2gWR0CRah+qBErodX2UKGgGaAloD0MI7YDripkrYkCUhpRSlGgVTegDaBZHQJGBvAFgUlB1fZQoaAZoCWgPQwjsFoGxvr9dQJSGlFKUaBVN6ANoFkdAkYTpswco6XV9lChoBmgJaA9DCO9WlugshGRAlIaUUpRoFU3oA2gWR0CRiebF0gbIdX2UKGgGaAloD0MIBduIJ7tSY0CUhpRSlGgVTegDaBZHQJGPBxMnJDF1fZQoaAZoCWgPQwi+TurLUjdhQJSGlFKUaBVN6ANoFkdAkZIGixmkFnV9lChoBmgJaA9DCE890uA2jmVAlIaUUpRoFU3oA2gWR0CRlogyM1jzdX2UKGgGaAloD0MIH0yKj88JZkCUhpRSlGgVTegDaBZHQJGYBBX0Xgt1fZQoaAZoCWgPQwh47j1c8sZkQJSGlFKUaBVN6ANoFkdAkZ+BtP557nV9lChoBmgJaA9DCBJnRdREpWBAlIaUUpRoFU3oA2gWR0CRoO1RceKbdX2UKGgGaAloD0MIm6p7ZHP+YUCUhpRSlGgVTegDaBZHQJGh79tMwlB1fZQoaAZoCWgPQwjImSZsv+NhQJSGlFKUaBVN6ANoFkdAkaM9fw7T2HV9lChoBmgJaA9DCAHcLF4saGVAlIaUUpRoFU3oA2gWR0CRrDU6gdwOdX2UKGgGaAloD0MIxqS/l0J8YUCUhpRSlGgVTegDaBZHQJGw1hz/6wd1fZQoaAZoCWgPQwiAC7Jl+UBjQJSGlFKUaBVN6ANoFkdAkbbUyYXwb3V9lChoBmgJaA9DCCy8y0V8u2RAlIaUUpRoFU3oA2gWR0CRtuT3IuGsdX2UKGgGaAloD0MIVryReeTlZ0CUhpRSlGgVTegDaBZHQJG3y8xsVL11fZQoaAZoCWgPQwjpKAezCapmQJSGlFKUaBVN6ANoFkdAkc/cBEKE4HV9lChoBmgJaA9DCOwYV1ycdGZAlIaUUpRoFU3oA2gWR0CR04G2kSEldX2UKGgGaAloD0MISWb1DjdBZ0CUhpRSlGgVTegDaBZHQJHZJEG7jDN1fZQoaAZoCWgPQwiuZTIcT9diQJSGlFKUaBVN6ANoFkdAkd8b3sXzlXV9lChoBmgJaA9DCL/WpUZogGNAlIaUUpRoFU3oA2gWR0CR4pxQzk6tdX2UKGgGaAloD0MI9WT+0bdpYUCUhpRSlGgVTegDaBZHQJHn8LG7z091fZQoaAZoCWgPQwgjumddo/ViQJSGlFKUaBVN6ANoFkdAkenLr5ZbIXV9lChoBmgJaA9DCFplprT+Z19AlIaUUpRoFU3oA2gWR0CR8hV6/qPfdX2UKGgGaAloD0MI04bD0kCJY0CUhpRSlGgVTegDaBZHQJHzjb9If8x1fZQoaAZoCWgPQwjPEfkupZdfQJSGlFKUaBVN6ANoFkdAkfSjWXkYGnV9lChoBmgJaA9DCNcxrri4F2RAlIaUUpRoFU3oA2gWR0CR9gFajesQdX2UKGgGaAloD0MIdvnWh3UKYECUhpRSlGgVTegDaBZHQJH+f2ugYgt1fZQoaAZoCWgPQwiH4SNiyg9hQJSGlFKUaBVN6ANoFkdAkgKljmSyMXV9lChoBmgJaA9DCKbVkLhHvmJAlIaUUpRoFU3oA2gWR0CSB/X+l0o0dX2UKGgGaAloD0MI4IEBhI/9YkCUhpRSlGgVTegDaBZHQJIIBanrIHV1fZQoaAZoCWgPQwhfXRWoxWVlQJSGlFKUaBVN6ANoFkdAkgjS704BFXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunar_lander_1M/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb15dd2793fb945378f110dbd5717d6bcb7587fba6af2b42347e4a7c37d3b2d4
|
3 |
+
size 87929
|
ppo_lunar_lander_1M/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:878d4f981420381d905bdc39b552f82f7aca39a337e3faa094eb1196943691ca
|
3 |
+
size 43201
|
ppo_lunar_lander_1M/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_lander_1M/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (248 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.60175621364283, "std_reward": 43.79666721834698, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T18:29:24.481873"}
|