claterza commited on
Commit
b913e0e
1 Parent(s): 50f0a0d

Upload PPO LunarLander-v2 trained agent with pre-built PPO.

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -105.92 +/- 44.00
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 100000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'claterza/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 247.29 +/- 44.84
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcf2e275e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcf2e27670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcf2e27700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcf2e27790>", "_build": "<function ActorCriticPolicy._build at 0x7fbcf2e27820>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcf2e278b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcf2e27940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcf2e279d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcf2e27a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcf2e27af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcf2e27b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcf2e1de70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670781751866373490, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPku70pZBy6p+CiurPttbX+4+Y6ggy8OQAAgD8AAIA/mgPTvbnJZz9OoLw9XRvMvhF80rxtUAQ+AAAAAAAAAADNFzU9uQdxPmLE5r3taeC98U2ivUmgBjwAAAAAAAAAADNjgbsfBf63eLLeuvecFDVvP/c5yuwEOgAAgD8AAIA/TaaUPeFgmbr1xzQ8TY2OtJ18FLnQh0azAACAPwAAgD8z68G97Inbuecoj7nETUa04y8buid0pTgAAIA/AACAP+bJkL2FPe+7hp0YvHtyAT3/7EK94znUPQAAgD8AAIA/GitbPVzfULq3bDA7CcgSNTnd8jr1k0m6AACAPwAAgD+zEXQ97PnRuXu8krvUPMw42zdAu6j6GjoAAIA/AACAPz1iYb4zH14/z35BvZSDr74h2x2+iMPRPAAAAAAAAAAAzUWJvFwLXroxwKU4cwHDNWoKi7sPhr+3AACAPwAAgD9T2zG++2qOvONjg7vWvMW5pa7/PTrarzoAAIA/AACAP2algzyFK8i5Ne8bO3FktDXOUsK7Wty5NAAAgD8AAIA/mlZ6vXs2grqVF+W6FKHFN9l4arot4Ng3AACAPwAAgD+A4Sg99mxRurpBMryJCbC2IGBRusolITYAAIA/AACAP0CBOT78Oyw/hsklPV6hjb5J8ok94slhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKTfvg5SQ0CUhpRSlIwBbJRL1YwBdJRHQJBWzI/7iyZ1fZQoaAZoCWgPQwhYU1kUdp0/QJSGlFKUaBVL8GgWR0CQW2y4Wk8BdX2UKGgGaAloD0MITn6LTpaMXECUhpRSlGgVTegDaBZHQJBgQDifg751fZQoaAZoCWgPQwj9bOS6qTdlQJSGlFKUaBVN6ANoFkdAkGSgh8pkPXV9lChoBmgJaA9DCKYol8Yv9WBAlIaUUpRoFU3oA2gWR0CQZ2H+ZPVNdX2UKGgGaAloD0MIY/GbwsqCZUCUhpRSlGgVTegDaBZHQJBov+MqBmR1fZQoaAZoCWgPQwg17zhFR9tiQJSGlFKUaBVN6ANoFkdAkG9R3V09yXV9lChoBmgJaA9DCBxhURGnLznAlIaUUpRoFUvlaBZHQJBwfi5uqFR1fZQoaAZoCWgPQwjnNXaJaqxkQJSGlFKUaBVN6ANoFkdAkHFcgZCOWHV9lChoBmgJaA9DCAt+G2I8IWNAlIaUUpRoFU3oA2gWR0CQcoL9deIEdX2UKGgGaAloD0MI2xMktjsSYUCUhpRSlGgVTegDaBZHQJB1Dnq3VkN1fZQoaAZoCWgPQwhVoYFYtitkQJSGlFKUaBVN6ANoFkdAkHW1Sn+AE3V9lChoBmgJaA9DCDD2XnzRIVxAlIaUUpRoFU3oA2gWR0CQd8Gmk30gdX2UKGgGaAloD0MIuB/wwABvY0CUhpRSlGgVTegDaBZHQJB4alenhsJ1fZQoaAZoCWgPQwisxhLWRm5hQJSGlFKUaBVN6ANoFkdAkHnoNAkcCHV9lChoBmgJaA9DCNPddTZkIWFAlIaUUpRoFU3oA2gWR0CQfUFPBSDRdX2UKGgGaAloD0MI02weh8HcAkCUhpRSlGgVS71oFkdAkH75RXOnmHV9lChoBmgJaA9DCLLV5ZQAhWFAlIaUUpRoFU3oA2gWR0CQlDQoTfzjdX2UKGgGaAloD0MIVaTC2EIyQUCUhpRSlGgVTQQBaBZHQJCUQ6EJ0GN1fZQoaAZoCWgPQwiVRzfCIqRiQJSGlFKUaBVN6ANoFkdAkJ2ZMxoIwHV9lChoBmgJaA9DCJ6ymq4n3VtAlIaUUpRoFU3oA2gWR0CQos8yvcJudX2UKGgGaAloD0MIDag3o+ZzYkCUhpRSlGgVTegDaBZHQJCoRnOB19x1fZQoaAZoCWgPQwjl7QinBX5uQJSGlFKUaBVNxAFoFkdAkKtklu3tr3V9lChoBmgJaA9DCAVqMXiYvVtAlIaUUpRoFU3oA2gWR0CQsExD9fkWdX2UKGgGaAloD0MIvJaQD3oHYkCUhpRSlGgVTegDaBZHQJCx3LU1AJN1fZQoaAZoCWgPQwgPR1fp7rRjQJSGlFKUaBVN6ANoFkdAkLiQgs9SuXV9lChoBmgJaA9DCHO9baZCAmBAlIaUUpRoFU3oA2gWR0CQubq3VkMDdX2UKGgGaAloD0MIRxyygXRcZUCUhpRSlGgVTegDaBZHQJC6lddE9dN1fZQoaAZoCWgPQwhrKovCLqtiQJSGlFKUaBVN6ANoFkdAkLumsJY1YXV9lChoBmgJaA9DCIY5QZsc4V9AlIaUUpRoFU3oA2gWR0CQwJ9zOopAdX2UKGgGaAloD0MI+u/Ba5fcXkCUhpRSlGgVTegDaBZHQJDBTnoxHoZ1fZQoaAZoCWgPQwgmcyzvKh1hQJSGlFKUaBVN6ANoFkdAkMLoZuQ6qHV9lChoBmgJaA9DCCrkSj0Lg2JAlIaUUpRoFU3oA2gWR0CQxmLLpzLfdX2UKGgGaAloD0MI5eyd0VZ9Y0CUhpRSlGgVTegDaBZHQJDdTd9Dx9Z1fZQoaAZoCWgPQwijHTf8btNmQJSGlFKUaBVN6ANoFkdAkN1f7vXsgXV9lChoBmgJaA9DCDYjg9xFikFAlIaUUpRoFUvQaBZHQJDeJc7hegN1fZQoaAZoCWgPQwi6nui68N9CQJSGlFKUaBVNOwFoFkdAkOMOYx+KCXV9lChoBmgJaA9DCOAruvWabGBAlIaUUpRoFU3oA2gWR0CQ5h9LHuJDdX2UKGgGaAloD0MIYY2z6QhJZUCUhpRSlGgVTegDaBZHQJDq61MM7U51fZQoaAZoCWgPQwj3eCEdHoVfQJSGlFKUaBVN6ANoFkdAkPASWJJoTXV9lChoBmgJaA9DCIyd8BIcyGZAlIaUUpRoFU3oA2gWR0CQ8zu7HyVfdX2UKGgGaAloD0MIQrRWtDm9YUCUhpRSlGgVTegDaBZHQJD4KvvBrN51fZQoaAZoCWgPQwgDXJAtSxhjQJSGlFKUaBVN6ANoFkdAkPnaJ/G2kXV9lChoBmgJaA9DCMObNXhfrmNAlIaUUpRoFU3oA2gWR0CRAckQf6oEdX2UKGgGaAloD0MItVNzucFEYUCUhpRSlGgVTegDaBZHQJEDRj6N2kl1fZQoaAZoCWgPQwhz843onqNfQJSGlFKUaBVN6ANoFkdAkQRZYYBNmHV9lChoBmgJaA9DCKeWrfXF7GBAlIaUUpRoFU3oA2gWR0CRBblpXZGsdX2UKGgGaAloD0MIoDTUKCRZZkCUhpRSlGgVTegDaBZHQJEOzzXjENx1fZQoaAZoCWgPQwhVFoVdlLBhQJSGlFKUaBVN6ANoFkdAkRNwT238XXV9lChoBmgJaA9DCGCPiZRmNWNAlIaUUpRoFU3oA2gWR0CRGZfDDTBqdX2UKGgGaAloD0MIrz+Jz52rXkCUhpRSlGgVTegDaBZHQJEZqGgzxgB1fZQoaAZoCWgPQwibyw2GuhZmQJSGlFKUaBVN6ANoFkdAkRqej/MnqnV9lChoBmgJaA9DCN0/FqJDbV9AlIaUUpRoFU3oA2gWR0CRMrxoqTbGdX2UKGgGaAloD0MINL3EWCZ3YUCUhpRSlGgVTegDaBZHQJE2U3GXHBF1fZQoaAZoCWgPQwjYutQIfaJlQJSGlFKUaBVN6ANoFkdAkTu5gCwKSnV9lChoBmgJaA9DCKBTkJ+N7WNAlIaUUpRoFU3oA2gWR0CRQS7tAs06dX2UKGgGaAloD0MIE/JBz+b6YkCUhpRSlGgVTegDaBZHQJFEbXPJJXh1fZQoaAZoCWgPQwiQpKSHoW5mQJSGlFKUaBVN6ANoFkdAkUl4fOlfq3V9lChoBmgJaA9DCOV620wFkWNAlIaUUpRoFU3oA2gWR0CRSy8Gs3hodX2UKGgGaAloD0MIZqNzfgrkZUCUhpRSlGgVTegDaBZHQJFTGF9KEnN1fZQoaAZoCWgPQwgIH0q05JVfQJSGlFKUaBVN6ANoFkdAkVSN6cAimnV9lChoBmgJaA9DCB9LH7qgn2FAlIaUUpRoFU3oA2gWR0CRVZiS7oStdX2UKGgGaAloD0MIrptSXiskYUCUhpRSlGgVTegDaBZHQJFW9xgiNbV1fZQoaAZoCWgPQwgCDMuf7y1iQJSGlFKUaBVN6ANoFkdAkV+qfWcz7HV9lChoBmgJaA9DCGLboswGIGFAlIaUUpRoFU3oA2gWR0CRY8AmReTndX2UKGgGaAloD0MIJetwdJVkZUCUhpRSlGgVTegDaBZHQJFpPM4cWCV1fZQoaAZoCWgPQwiVRPZBFi5iQJSGlFKUaBVN6ANoFkdAkWlL61stTXV9lChoBmgJaA9DCCRfCaTEkGBAlIaUUpRoFU3oA2gWR0CRah+qBErodX2UKGgGaAloD0MI7YDripkrYkCUhpRSlGgVTegDaBZHQJGBvAFgUlB1fZQoaAZoCWgPQwjsFoGxvr9dQJSGlFKUaBVN6ANoFkdAkYTpswco6XV9lChoBmgJaA9DCO9WlugshGRAlIaUUpRoFU3oA2gWR0CRiebF0gbIdX2UKGgGaAloD0MIBduIJ7tSY0CUhpRSlGgVTegDaBZHQJGPBxMnJDF1fZQoaAZoCWgPQwi+TurLUjdhQJSGlFKUaBVN6ANoFkdAkZIGixmkFnV9lChoBmgJaA9DCE890uA2jmVAlIaUUpRoFU3oA2gWR0CRlogyM1jzdX2UKGgGaAloD0MIH0yKj88JZkCUhpRSlGgVTegDaBZHQJGYBBX0Xgt1fZQoaAZoCWgPQwh47j1c8sZkQJSGlFKUaBVN6ANoFkdAkZ+BtP557nV9lChoBmgJaA9DCBJnRdREpWBAlIaUUpRoFU3oA2gWR0CRoO1RceKbdX2UKGgGaAloD0MIm6p7ZHP+YUCUhpRSlGgVTegDaBZHQJGh79tMwlB1fZQoaAZoCWgPQwjImSZsv+NhQJSGlFKUaBVN6ANoFkdAkaM9fw7T2HV9lChoBmgJaA9DCAHcLF4saGVAlIaUUpRoFU3oA2gWR0CRrDU6gdwOdX2UKGgGaAloD0MIxqS/l0J8YUCUhpRSlGgVTegDaBZHQJGw1hz/6wd1fZQoaAZoCWgPQwiAC7Jl+UBjQJSGlFKUaBVN6ANoFkdAkbbUyYXwb3V9lChoBmgJaA9DCCy8y0V8u2RAlIaUUpRoFU3oA2gWR0CRtuT3IuGsdX2UKGgGaAloD0MIVryReeTlZ0CUhpRSlGgVTegDaBZHQJG3y8xsVL11fZQoaAZoCWgPQwjpKAezCapmQJSGlFKUaBVN6ANoFkdAkc/cBEKE4HV9lChoBmgJaA9DCOwYV1ycdGZAlIaUUpRoFU3oA2gWR0CR04G2kSEldX2UKGgGaAloD0MISWb1DjdBZ0CUhpRSlGgVTegDaBZHQJHZJEG7jDN1fZQoaAZoCWgPQwiuZTIcT9diQJSGlFKUaBVN6ANoFkdAkd8b3sXzlXV9lChoBmgJaA9DCL/WpUZogGNAlIaUUpRoFU3oA2gWR0CR4pxQzk6tdX2UKGgGaAloD0MI9WT+0bdpYUCUhpRSlGgVTegDaBZHQJHn8LG7z091fZQoaAZoCWgPQwgjumddo/ViQJSGlFKUaBVN6ANoFkdAkenLr5ZbIXV9lChoBmgJaA9DCFplprT+Z19AlIaUUpRoFU3oA2gWR0CR8hV6/qPfdX2UKGgGaAloD0MI04bD0kCJY0CUhpRSlGgVTegDaBZHQJHzjb9If8x1fZQoaAZoCWgPQwjPEfkupZdfQJSGlFKUaBVN6ANoFkdAkfSjWXkYGnV9lChoBmgJaA9DCNcxrri4F2RAlIaUUpRoFU3oA2gWR0CR9gFajesQdX2UKGgGaAloD0MIdvnWh3UKYECUhpRSlGgVTegDaBZHQJH+f2ugYgt1fZQoaAZoCWgPQwiH4SNiyg9hQJSGlFKUaBVN6ANoFkdAkgKljmSyMXV9lChoBmgJaA9DCKbVkLhHvmJAlIaUUpRoFU3oA2gWR0CSB/X+l0o0dX2UKGgGaAloD0MI4IEBhI/9YkCUhpRSlGgVTegDaBZHQJIIBanrIHV1fZQoaAZoCWgPQwhfXRWoxWVlQJSGlFKUaBVN6ANoFkdAkgjS704BFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70157098b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7015709940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70157099d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7015709a60>", "_build": "<function ActorCriticPolicy._build at 0x7f7015709af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7015709b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7015709c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7015709ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7015709d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7015709dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7015709e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7015709ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f70156a6c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681762152782892449, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFM+Gz4cXVi8fcN7ukbKqjjHRsi9C8avOQAAgD8AAIA/Bk6sPjt4Cj+CT8C9IjL0vn0QMz7cNSm+AAAAAAAAAAAa5TM9rt2cuo6X0DnpvTK2OFtGup4C8LgAAIA/AACAPw1+Pj6Ueh4+wLdtvlXjnL5JFGW9XvhUvQAAAAAAAAAARhgjPun0BLw+vP05aZ8kuLc2dL16eAK5AACAPwAAgD/z9mQ+T6loPnbMKL4uD7K+75ohPfJzzbwAAAAAAAAAAMA7gj3dST8+YsQtuyHjmL4uwIM8oeACPAAAAAAAAAAARkUnvm5jhLyepB+8QEO/uvCsAT7+JZk7AACAPwAAgD/Ad62+OFEFP0CnkD6BKrC+3zQKvix6Hz4AAAAAAAAAAACi0jxIAZK6k/4uMcPnaS6hDy276oS0sQAAgD8AAIA/oy+fPrHaST9J7zg+j+YLv5bQdj65y7m9AAAAAAAAAAAzy4a7hbTTPhamYjs/oLa+uN7tvMjLk7wAAAAAAAAAAJrBkrzJ1BM9M9rPOyX0Rr5TJIA8EkG5vAAAAAAAAAAAc1AnvqRfDj5wSzo+FlM9vjGwIj3KmG09AAAAAAAAAACAiGG9jKjBP78Jib6v4te8YiW0vXuezL0AAAAAAAAAAGbkBT7smPQ81RT0vbNuQ75Pz8M89wgbuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7ncoCvSIc0CUhpRSlIwBbJRL14wBdJRHQJfw5/mT1TR1fZQoaAZoCWgPQwg+WTFcnX5tQJSGlFKUaBVLxWgWR0CX8b1AJLM+dX2UKGgGaAloD0MIorWizXFpcUCUhpRSlGgVS+toFkdAl/Ls9jgAInV9lChoBmgJaA9DCMRCrWlejXBAlIaUUpRoFUvKaBZHQJf0C5mRNh51fZQoaAZoCWgPQwiWJM/1/ZVyQJSGlFKUaBVLzWgWR0CX9M1/2Cd0dX2UKGgGaAloD0MISdi3k4hIYkCUhpRSlGgVTegDaBZHQJf1uc2BJ7N1fZQoaAZoCWgPQwiHw9LAz5pwQJSGlFKUaBVLvWgWR0CX9lsxO+IudX2UKGgGaAloD0MIdlQ1QVSNckCUhpRSlGgVS+loFkdAl/cynpB5X3V9lChoBmgJaA9DCIkl5e6zqHBAlIaUUpRoFUvcaBZHQJf3bos7MgV1fZQoaAZoCWgPQwiQpKSHoV1jQJSGlFKUaBVN6ANoFkdAl/enxaxHG3V9lChoBmgJaA9DCGoV/aGZdW5AlIaUUpRoFUvTaBZHQJf3yoLofSx1fZQoaAZoCWgPQwhCz2bVJxRwQJSGlFKUaBVL22gWR0CX+HLvTgEVdX2UKGgGaAloD0MI8IXJVAFwcECUhpRSlGgVS+RoFkdAl/iGuxKQJXV9lChoBmgJaA9DCL/yID2FYXFAlIaUUpRoFUveaBZHQJf5aHHmzSl1fZQoaAZoCWgPQwiwO915osNxQJSGlFKUaBVLyWgWR0CX+a5vtMPCdX2UKGgGaAloD0MIP4wQHq16cUCUhpRSlGgVS+9oFkdAl/olRpDeCXV9lChoBmgJaA9DCHnKarper3BAlIaUUpRoFUv8aBZHQJf6S7+T/yZ1fZQoaAZoCWgPQwg+6xotR71xQJSGlFKUaBVLzGgWR0CX+9rqt5lfdX2UKGgGaAloD0MISino9tLFckCUhpRSlGgVS+hoFkdAl/vjm8ujAXV9lChoBmgJaA9DCJjg1AdSHnBAlIaUUpRoFUvBaBZHQJf81eF+NLl1fZQoaAZoCWgPQwiDNc6mI3FxQJSGlFKUaBVL32gWR0CX/SoE0SAZdX2UKGgGaAloD0MIKjbmdQRdcECUhpRSlGgVS+doFkdAl/5PhddE9nV9lChoBmgJaA9DCEMglzhymG5AlIaUUpRoFUvNaBZHQJf+gSg5BC51fZQoaAZoCWgPQwi0kIDRpcVyQJSGlFKUaBVL6mgWR0CX/vmP5pJxdX2UKGgGaAloD0MIXkvIB71/bUCUhpRSlGgVS+VoFkdAl/8g88s+V3V9lChoBmgJaA9DCMUENXyLlXNAlIaUUpRoFUvtaBZHQJf/Mh7mdRR1fZQoaAZoCWgPQwjG+gYm91pwQJSGlFKUaBVLxmgWR0CX/6x2St/4dX2UKGgGaAloD0MISKZDpydrcECUhpRSlGgVS/VoFkdAmAAiEpRXOnV9lChoBmgJaA9DCIDUJk4unHBAlIaUUpRoFUvLaBZHQJgAbTuv2Xd1fZQoaAZoCWgPQwhZbmk1JHhyQJSGlFKUaBVNAAFoFkdAmABu7lJYknV9lChoBmgJaA9DCJ8AipHl53FAlIaUUpRoFUvnaBZHQJgA6SmqHXV1fZQoaAZoCWgPQwia0Y+G0zNuQJSGlFKUaBVLxGgWR0CYAUJYDDCQdX2UKGgGaAloD0MIhZm2f2UXckCUhpRSlGgVTQoBaBZHQJgBaGnGbTd1fZQoaAZoCWgPQwiygAnc+rxyQJSGlFKUaBVLyGgWR0CYAhyfthNNdX2UKGgGaAloD0MIOUNxx5u1bECUhpRSlGgVS91oFkdAmAJpA+pwTHV9lChoBmgJaA9DCN8xPPazznJAlIaUUpRoFUvBaBZHQJgDi+QEIPd1fZQoaAZoCWgPQwhZox6iUcdwQJSGlFKUaBVL1mgWR0CYA61LrX18dX2UKGgGaAloD0MIeXQjLCpAcECUhpRSlGgVS+BoFkdAmAPBoysS03V9lChoBmgJaA9DCEYjn1e8XnNAlIaUUpRoFUvEaBZHQJgE+GYa5wx1fZQoaAZoCWgPQwj2fqMdt/hxQJSGlFKUaBVL9WgWR0CYBQjx0+1SdX2UKGgGaAloD0MISS2UTE6eckCUhpRSlGgVS9hoFkdAmAUpyp71I3V9lChoBmgJaA9DCDFD44mgd3BAlIaUUpRoFUvsaBZHQJgFOe/YapB1fZQoaAZoCWgPQwhxdJXurlJxQJSGlFKUaBVL1WgWR0CYBWi3XqZ/dX2UKGgGaAloD0MIutxgqMNAb0CUhpRSlGgVS8poFkdAmAYTho/RmnV9lChoBmgJaA9DCM+6RssBcHBAlIaUUpRoFUvcaBZHQJgGJyo4uK51fZQoaAZoCWgPQwgi4uZUcnZxQJSGlFKUaBVLwmgWR0CYBzff4yoGdX2UKGgGaAloD0MIuHU3TzWUcECUhpRSlGgVS9NoFkdAmAdZOafBe3V9lChoBmgJaA9DCAa5izDF3G9AlIaUUpRoFUv3aBZHQJgHbSLIgeR1fZQoaAZoCWgPQwhE4EigAXByQJSGlFKUaBVL5mgWR0CYCcTefqX4dX2UKGgGaAloD0MIzhYQWk+tcECUhpRSlGgVS8ZoFkdAmApLrHEMs3V9lChoBmgJaA9DCEJbzqW4xXJAlIaUUpRoFU0GAWgWR0CYCq2pyZKGdX2UKGgGaAloD0MIWrqCbcRxcUCUhpRSlGgVS9FoFkdAmAr336AOKHV9lChoBmgJaA9DCNgtAmO9yXBAlIaUUpRoFUvVaBZHQJgLWK4x1xN1fZQoaAZoCWgPQwjKUBVTqV9wQJSGlFKUaBVL62gWR0CYC4t8NQTFdX2UKGgGaAloD0MIj1VKz3QCcECUhpRSlGgVS9JoFkdAmA1oicG1QnV9lChoBmgJaA9DCGYWodjKC3FAlIaUUpRoFUvpaBZHQJgN8i/wiJR1fZQoaAZoCWgPQwje5/hocUpyQJSGlFKUaBVNQgFoFkdAmA4pDNQj2XV9lChoBmgJaA9DCAjovpwZ1nFAlIaUUpRoFUvsaBZHQJgOPta6jFh1fZQoaAZoCWgPQwhtyhXeZWpiQJSGlFKUaBVN6ANoFkdAmA7g4ffXPXV9lChoBmgJaA9DCAadEDpovHBAlIaUUpRoFUvGaBZHQJgPiGFi8Wd1fZQoaAZoCWgPQwiOAdnrXehwQJSGlFKUaBVLv2gWR0CYD85e7cwhdX2UKGgGaAloD0MINrBVggWCcUCUhpRSlGgVS+poFkdAmBFbOVxCIHV9lChoBmgJaA9DCPOOU3Qkz29AlIaUUpRoFUvlaBZHQJgRenDR+jN1fZQoaAZoCWgPQwhOKhprP4NwQJSGlFKUaBVL2mgWR0CYEbAbQ1JldX2UKGgGaAloD0MIigW+otvAcUCUhpRSlGgVTQ0BaBZHQJgS6DbrTph1fZQoaAZoCWgPQwjku5S6pI5xQJSGlFKUaBVLyWgWR0CYExD4gzP9dX2UKGgGaAloD0MIqpuLv61xcECUhpRSlGgVS9xoFkdAmBQiPIXCTHV9lChoBmgJaA9DCDVEFf4MvnBAlIaUUpRoFUvfaBZHQJgUb1anrIJ1fZQoaAZoCWgPQwhfRrHc0olyQJSGlFKUaBVL7mgWR0CYFO8hcJMQdX2UKGgGaAloD0MIeAjjp7FYcECUhpRSlGgVS8ZoFkdAmBVihi9ZinV9lChoBmgJaA9DCBuciH7tF3FAlIaUUpRoFUvgaBZHQJgV1Pwd8zB1fZQoaAZoCWgPQwh5dCMsKjRnQJSGlFKUaBVN6ANoFkdAmBcV3hXKbXV9lChoBmgJaA9DCG+fVWZKTHFAlIaUUpRoFUvRaBZHQJgXaAG0NSZ1fZQoaAZoCWgPQwitiJrosyFxQJSGlFKUaBVL7mgWR0CYGB1A7gbZdX2UKGgGaAloD0MINpGZC1w8cUCUhpRSlGgVS8xoFkdAmBjjnaFmF3V9lChoBmgJaA9DCBTMmII1wW1AlIaUUpRoFUviaBZHQJgZYa2nbZh1fZQoaAZoCWgPQwgs8YCyKdRtQJSGlFKUaBVL02gWR0CYGjAxSHdodX2UKGgGaAloD0MIilWDMDeZY0CUhpRSlGgVTegDaBZHQJgaQNRWLgp1fZQoaAZoCWgPQwh07+GSI9BxQJSGlFKUaBVL5GgWR0CYGwOvt+kQdX2UKGgGaAloD0MIPSe9b/wfcECUhpRSlGgVS9ZoFkdAmBsjGxUvPHV9lChoBmgJaA9DCNsTJLb7aHJAlIaUUpRoFU1PAWgWR0CYG04Vh1DCdX2UKGgGaAloD0MIc4OhDiutb0CUhpRSlGgVS9loFkdAmBuoTfzjFXV9lChoBmgJaA9DCANAFTduvXBAlIaUUpRoFUvnaBZHQJgcZtYSxqx1fZQoaAZoCWgPQwhMwoU8AuBwQJSGlFKUaBVLvWgWR0CYHLbrTpgUdX2UKGgGaAloD0MIdZKtLudJcUCUhpRSlGgVS+hoFkdAmB2R7qptJnV9lChoBmgJaA9DCOc24V5Zs3BAlIaUUpRoFUvZaBZHQJgeIPQOWjZ1fZQoaAZoCWgPQwgNHNDSFcViQJSGlFKUaBVN6ANoFkdAmB9nXRPXTXV9lChoBmgJaA9DCIaRXtSutHNAlIaUUpRoFUvFaBZHQJgfrErGza91fZQoaAZoCWgPQwi/LO3UHKpwQJSGlFKUaBVL42gWR0CYH7IdELH/dX2UKGgGaAloD0MIB3k9mFQ6cUCUhpRSlGgVS95oFkdAmCEjDn/1hHV9lChoBmgJaA9DCEyo4PCCvnJAlIaUUpRoFUvWaBZHQJghM4WDYiB1fZQoaAZoCWgPQwiYMnBAywFnQJSGlFKUaBVN6ANoFkdAmCJwyM1jzHV9lChoBmgJaA9DCJI9Qs2Q62BAlIaUUpRoFU3oA2gWR0CYIonZCfHxdX2UKGgGaAloD0MI/aIE/QWbb0CUhpRSlGgVS8xoFkdAmCKbYPGyX3V9lChoBmgJaA9DCGed8X1x7XFAlIaUUpRoFUvhaBZHQJgi2Gyon8d1fZQoaAZoCWgPQwiI9rGCH1ByQJSGlFKUaBVNMwFoFkdAmCLhCY1HfHV9lChoBmgJaA9DCLmLMEV57XBAlIaUUpRoFU0VAWgWR0CYIvADJU5udX2UKGgGaAloD0MInzpWKf3CckCUhpRSlGgVS8toFkdAmCNi9VWCE3V9lChoBmgJaA9DCEyKj0/ITHBAlIaUUpRoFUvHaBZHQJgjvpD/lyR1fZQoaAZoCWgPQwgMI72oHVlyQJSGlFKUaBVLzWgWR0CYJOpNKyv+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9deaccaf31241b8c4e452db31cd054f951ce0aeae32c943c530058f5a291020e
3
+ size 147282
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70157098b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7015709940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70157099d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7015709a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7015709af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7015709b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7015709c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7015709ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7015709d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7015709dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7015709e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7015709ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f70156a6c40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681762152782892449,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFM+Gz4cXVi8fcN7ukbKqjjHRsi9C8avOQAAgD8AAIA/Bk6sPjt4Cj+CT8C9IjL0vn0QMz7cNSm+AAAAAAAAAAAa5TM9rt2cuo6X0DnpvTK2OFtGup4C8LgAAIA/AACAPw1+Pj6Ueh4+wLdtvlXjnL5JFGW9XvhUvQAAAAAAAAAARhgjPun0BLw+vP05aZ8kuLc2dL16eAK5AACAPwAAgD/z9mQ+T6loPnbMKL4uD7K+75ohPfJzzbwAAAAAAAAAAMA7gj3dST8+YsQtuyHjmL4uwIM8oeACPAAAAAAAAAAARkUnvm5jhLyepB+8QEO/uvCsAT7+JZk7AACAPwAAgD/Ad62+OFEFP0CnkD6BKrC+3zQKvix6Hz4AAAAAAAAAAACi0jxIAZK6k/4uMcPnaS6hDy276oS0sQAAgD8AAIA/oy+fPrHaST9J7zg+j+YLv5bQdj65y7m9AAAAAAAAAAAzy4a7hbTTPhamYjs/oLa+uN7tvMjLk7wAAAAAAAAAAJrBkrzJ1BM9M9rPOyX0Rr5TJIA8EkG5vAAAAAAAAAAAc1AnvqRfDj5wSzo+FlM9vjGwIj3KmG09AAAAAAAAAACAiGG9jKjBP78Jib6v4te8YiW0vXuezL0AAAAAAAAAAGbkBT7smPQ81RT0vbNuQ75Pz8M89wgbuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7ncoCvSIc0CUhpRSlIwBbJRL14wBdJRHQJfw5/mT1TR1fZQoaAZoCWgPQwg+WTFcnX5tQJSGlFKUaBVLxWgWR0CX8b1AJLM+dX2UKGgGaAloD0MIorWizXFpcUCUhpRSlGgVS+toFkdAl/Ls9jgAInV9lChoBmgJaA9DCMRCrWlejXBAlIaUUpRoFUvKaBZHQJf0C5mRNh51fZQoaAZoCWgPQwiWJM/1/ZVyQJSGlFKUaBVLzWgWR0CX9M1/2Cd0dX2UKGgGaAloD0MISdi3k4hIYkCUhpRSlGgVTegDaBZHQJf1uc2BJ7N1fZQoaAZoCWgPQwiHw9LAz5pwQJSGlFKUaBVLvWgWR0CX9lsxO+IudX2UKGgGaAloD0MIdlQ1QVSNckCUhpRSlGgVS+loFkdAl/cynpB5X3V9lChoBmgJaA9DCIkl5e6zqHBAlIaUUpRoFUvcaBZHQJf3bos7MgV1fZQoaAZoCWgPQwiQpKSHoV1jQJSGlFKUaBVN6ANoFkdAl/enxaxHG3V9lChoBmgJaA9DCGoV/aGZdW5AlIaUUpRoFUvTaBZHQJf3yoLofSx1fZQoaAZoCWgPQwhCz2bVJxRwQJSGlFKUaBVL22gWR0CX+HLvTgEVdX2UKGgGaAloD0MI8IXJVAFwcECUhpRSlGgVS+RoFkdAl/iGuxKQJXV9lChoBmgJaA9DCL/yID2FYXFAlIaUUpRoFUveaBZHQJf5aHHmzSl1fZQoaAZoCWgPQwiwO915osNxQJSGlFKUaBVLyWgWR0CX+a5vtMPCdX2UKGgGaAloD0MIP4wQHq16cUCUhpRSlGgVS+9oFkdAl/olRpDeCXV9lChoBmgJaA9DCHnKarper3BAlIaUUpRoFUv8aBZHQJf6S7+T/yZ1fZQoaAZoCWgPQwg+6xotR71xQJSGlFKUaBVLzGgWR0CX+9rqt5lfdX2UKGgGaAloD0MISino9tLFckCUhpRSlGgVS+hoFkdAl/vjm8ujAXV9lChoBmgJaA9DCJjg1AdSHnBAlIaUUpRoFUvBaBZHQJf81eF+NLl1fZQoaAZoCWgPQwiDNc6mI3FxQJSGlFKUaBVL32gWR0CX/SoE0SAZdX2UKGgGaAloD0MIKjbmdQRdcECUhpRSlGgVS+doFkdAl/5PhddE9nV9lChoBmgJaA9DCEMglzhymG5AlIaUUpRoFUvNaBZHQJf+gSg5BC51fZQoaAZoCWgPQwi0kIDRpcVyQJSGlFKUaBVL6mgWR0CX/vmP5pJxdX2UKGgGaAloD0MIXkvIB71/bUCUhpRSlGgVS+VoFkdAl/8g88s+V3V9lChoBmgJaA9DCMUENXyLlXNAlIaUUpRoFUvtaBZHQJf/Mh7mdRR1fZQoaAZoCWgPQwjG+gYm91pwQJSGlFKUaBVLxmgWR0CX/6x2St/4dX2UKGgGaAloD0MISKZDpydrcECUhpRSlGgVS/VoFkdAmAAiEpRXOnV9lChoBmgJaA9DCIDUJk4unHBAlIaUUpRoFUvLaBZHQJgAbTuv2Xd1fZQoaAZoCWgPQwhZbmk1JHhyQJSGlFKUaBVNAAFoFkdAmABu7lJYknV9lChoBmgJaA9DCJ8AipHl53FAlIaUUpRoFUvnaBZHQJgA6SmqHXV1fZQoaAZoCWgPQwia0Y+G0zNuQJSGlFKUaBVLxGgWR0CYAUJYDDCQdX2UKGgGaAloD0MIhZm2f2UXckCUhpRSlGgVTQoBaBZHQJgBaGnGbTd1fZQoaAZoCWgPQwiygAnc+rxyQJSGlFKUaBVLyGgWR0CYAhyfthNNdX2UKGgGaAloD0MIOUNxx5u1bECUhpRSlGgVS91oFkdAmAJpA+pwTHV9lChoBmgJaA9DCN8xPPazznJAlIaUUpRoFUvBaBZHQJgDi+QEIPd1fZQoaAZoCWgPQwhZox6iUcdwQJSGlFKUaBVL1mgWR0CYA61LrX18dX2UKGgGaAloD0MIeXQjLCpAcECUhpRSlGgVS+BoFkdAmAPBoysS03V9lChoBmgJaA9DCEYjn1e8XnNAlIaUUpRoFUvEaBZHQJgE+GYa5wx1fZQoaAZoCWgPQwj2fqMdt/hxQJSGlFKUaBVL9WgWR0CYBQjx0+1SdX2UKGgGaAloD0MISS2UTE6eckCUhpRSlGgVS9hoFkdAmAUpyp71I3V9lChoBmgJaA9DCDFD44mgd3BAlIaUUpRoFUvsaBZHQJgFOe/YapB1fZQoaAZoCWgPQwhxdJXurlJxQJSGlFKUaBVL1WgWR0CYBWi3XqZ/dX2UKGgGaAloD0MIutxgqMNAb0CUhpRSlGgVS8poFkdAmAYTho/RmnV9lChoBmgJaA9DCM+6RssBcHBAlIaUUpRoFUvcaBZHQJgGJyo4uK51fZQoaAZoCWgPQwgi4uZUcnZxQJSGlFKUaBVLwmgWR0CYBzff4yoGdX2UKGgGaAloD0MIuHU3TzWUcECUhpRSlGgVS9NoFkdAmAdZOafBe3V9lChoBmgJaA9DCAa5izDF3G9AlIaUUpRoFUv3aBZHQJgHbSLIgeR1fZQoaAZoCWgPQwhE4EigAXByQJSGlFKUaBVL5mgWR0CYCcTefqX4dX2UKGgGaAloD0MIzhYQWk+tcECUhpRSlGgVS8ZoFkdAmApLrHEMs3V9lChoBmgJaA9DCEJbzqW4xXJAlIaUUpRoFU0GAWgWR0CYCq2pyZKGdX2UKGgGaAloD0MIWrqCbcRxcUCUhpRSlGgVS9FoFkdAmAr336AOKHV9lChoBmgJaA9DCNgtAmO9yXBAlIaUUpRoFUvVaBZHQJgLWK4x1xN1fZQoaAZoCWgPQwjKUBVTqV9wQJSGlFKUaBVL62gWR0CYC4t8NQTFdX2UKGgGaAloD0MIj1VKz3QCcECUhpRSlGgVS9JoFkdAmA1oicG1QnV9lChoBmgJaA9DCGYWodjKC3FAlIaUUpRoFUvpaBZHQJgN8i/wiJR1fZQoaAZoCWgPQwje5/hocUpyQJSGlFKUaBVNQgFoFkdAmA4pDNQj2XV9lChoBmgJaA9DCAjovpwZ1nFAlIaUUpRoFUvsaBZHQJgOPta6jFh1fZQoaAZoCWgPQwhtyhXeZWpiQJSGlFKUaBVN6ANoFkdAmA7g4ffXPXV9lChoBmgJaA9DCAadEDpovHBAlIaUUpRoFUvGaBZHQJgPiGFi8Wd1fZQoaAZoCWgPQwiOAdnrXehwQJSGlFKUaBVLv2gWR0CYD85e7cwhdX2UKGgGaAloD0MINrBVggWCcUCUhpRSlGgVS+poFkdAmBFbOVxCIHV9lChoBmgJaA9DCPOOU3Qkz29AlIaUUpRoFUvlaBZHQJgRenDR+jN1fZQoaAZoCWgPQwhOKhprP4NwQJSGlFKUaBVL2mgWR0CYEbAbQ1JldX2UKGgGaAloD0MIigW+otvAcUCUhpRSlGgVTQ0BaBZHQJgS6DbrTph1fZQoaAZoCWgPQwjku5S6pI5xQJSGlFKUaBVLyWgWR0CYExD4gzP9dX2UKGgGaAloD0MIqpuLv61xcECUhpRSlGgVS9xoFkdAmBQiPIXCTHV9lChoBmgJaA9DCDVEFf4MvnBAlIaUUpRoFUvfaBZHQJgUb1anrIJ1fZQoaAZoCWgPQwhfRrHc0olyQJSGlFKUaBVL7mgWR0CYFO8hcJMQdX2UKGgGaAloD0MIeAjjp7FYcECUhpRSlGgVS8ZoFkdAmBVihi9ZinV9lChoBmgJaA9DCBuciH7tF3FAlIaUUpRoFUvgaBZHQJgV1Pwd8zB1fZQoaAZoCWgPQwh5dCMsKjRnQJSGlFKUaBVN6ANoFkdAmBcV3hXKbXV9lChoBmgJaA9DCG+fVWZKTHFAlIaUUpRoFUvRaBZHQJgXaAG0NSZ1fZQoaAZoCWgPQwitiJrosyFxQJSGlFKUaBVL7mgWR0CYGB1A7gbZdX2UKGgGaAloD0MINpGZC1w8cUCUhpRSlGgVS8xoFkdAmBjjnaFmF3V9lChoBmgJaA9DCBTMmII1wW1AlIaUUpRoFUviaBZHQJgZYa2nbZh1fZQoaAZoCWgPQwgs8YCyKdRtQJSGlFKUaBVL02gWR0CYGjAxSHdodX2UKGgGaAloD0MIilWDMDeZY0CUhpRSlGgVTegDaBZHQJgaQNRWLgp1fZQoaAZoCWgPQwh07+GSI9BxQJSGlFKUaBVL5GgWR0CYGwOvt+kQdX2UKGgGaAloD0MIPSe9b/wfcECUhpRSlGgVS9ZoFkdAmBsjGxUvPHV9lChoBmgJaA9DCNsTJLb7aHJAlIaUUpRoFU1PAWgWR0CYG04Vh1DCdX2UKGgGaAloD0MIc4OhDiutb0CUhpRSlGgVS9loFkdAmBuoTfzjFXV9lChoBmgJaA9DCANAFTduvXBAlIaUUpRoFUvnaBZHQJgcZtYSxqx1fZQoaAZoCWgPQwhMwoU8AuBwQJSGlFKUaBVLvWgWR0CYHLbrTpgUdX2UKGgGaAloD0MIdZKtLudJcUCUhpRSlGgVS+hoFkdAmB2R7qptJnV9lChoBmgJaA9DCOc24V5Zs3BAlIaUUpRoFUvZaBZHQJgeIPQOWjZ1fZQoaAZoCWgPQwgNHNDSFcViQJSGlFKUaBVN6ANoFkdAmB9nXRPXTXV9lChoBmgJaA9DCIaRXtSutHNAlIaUUpRoFUvFaBZHQJgfrErGza91fZQoaAZoCWgPQwi/LO3UHKpwQJSGlFKUaBVL42gWR0CYH7IdELH/dX2UKGgGaAloD0MIB3k9mFQ6cUCUhpRSlGgVS95oFkdAmCEjDn/1hHV9lChoBmgJaA9DCEyo4PCCvnJAlIaUUpRoFUvWaBZHQJghM4WDYiB1fZQoaAZoCWgPQwiYMnBAywFnQJSGlFKUaBVN6ANoFkdAmCJwyM1jzHV9lChoBmgJaA9DCJI9Qs2Q62BAlIaUUpRoFU3oA2gWR0CYIonZCfHxdX2UKGgGaAloD0MI/aIE/QWbb0CUhpRSlGgVS8xoFkdAmCKbYPGyX3V9lChoBmgJaA9DCGed8X1x7XFAlIaUUpRoFUvhaBZHQJgi2Gyon8d1fZQoaAZoCWgPQwiI9rGCH1ByQJSGlFKUaBVNMwFoFkdAmCLhCY1HfHV9lChoBmgJaA9DCLmLMEV57XBAlIaUUpRoFU0VAWgWR0CYIvADJU5udX2UKGgGaAloD0MInzpWKf3CckCUhpRSlGgVS8toFkdAmCNi9VWCE3V9lChoBmgJaA9DCEyKj0/ITHBAlIaUUpRoFUvHaBZHQJgjvpD/lyR1fZQoaAZoCWgPQwgMI72oHVlyQJSGlFKUaBVLzWgWR0CYJOpNKyv+dWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 310,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 2048,
82
+ "gamma": 0.99,
83
+ "gae_lambda": 0.95,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 10,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf278220fc9b64ea6ea05262ae971757eeacfe639b66f07b278880c1f22e49e9
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85ffa460a43c559dfc569e343c064387b60c0524f57d3e639031de4097f96ec9
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -105.91865071954571, "std_reward": 43.998076211171885, "n_evaluation_episodes": 10, "eval_datetime": "2023-04-17T19:28:25.848788"}
 
1
+ {"mean_reward": 247.28890045781864, "std_reward": 44.841265240743844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T20:36:32.080535"}