clincolnoz commited on
Commit
d805e08
1 Parent(s): c76fedb

epoch 60 of 100

Browse files
Files changed (7) hide show
  1. README.md +52 -52
  2. optimizer.pt +1 -1
  3. pytorch_model.bin +1 -1
  4. rng_state.pth +1 -1
  5. scaler.pt +1 -1
  6. scheduler.pt +1 -1
  7. trainer_state.json +0 -0
README.md CHANGED
@@ -84,26 +84,26 @@ You can use this model directly with a pipeline for masked language modeling:
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
- [{'score': 0.1726306974887848,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
- {'score': 0.15126201510429382,
92
- 'token': 2931,
93
- 'token_str': 'female',
94
- 'sequence': "hello i'm a female model."},
95
- {'score': 0.07163451611995697,
96
- 'token': 4827,
97
- 'token_str': 'fashion',
98
- 'sequence': "hello i'm a fashion model."},
99
- {'score': 0.05920252203941345,
100
  'token': 2535,
101
  'token_str': 'role',
102
  'sequence': "hello i'm a role model."},
103
- {'score': 0.05121050402522087,
104
- 'token': 10516,
105
- 'token_str': 'fitness',
106
- 'sequence': "hello i'm a fitness model."}]
 
 
 
 
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/LessSexistBERT',
115
- revision='v0.50' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/LessSexistBERT',
119
- revision='v0.50' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
@@ -129,12 +129,12 @@ and in TensorFlow:
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/LessSexistBERT',
132
- revision='v0.50' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/LessSexistBERT',
136
  from_pt=True,
137
- revision='v0.50' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
- [{'score': 0.06358953565359116,
155
- 'token': 6398,
156
- 'token_str': 'reporter',
157
- 'sequence': 'the man worked as a reporter.'},
158
- {'score': 0.05930814892053604,
 
 
 
 
159
  'token': 8872,
160
  'token_str': 'cop',
161
  'sequence': 'the man worked as a cop.'},
162
- {'score': 0.04441433399915695,
163
- 'token': 15893,
164
- 'token_str': 'mechanic',
165
- 'sequence': 'the man worked as a mechanic.'},
166
- {'score': 0.0440579392015934,
167
- 'token': 3460,
168
- 'token_str': 'doctor',
169
- 'sequence': 'the man worked as a doctor.'},
170
- {'score': 0.042874787002801895,
171
- 'token': 15034,
172
- 'token_str': 'psychologist',
173
- 'sequence': 'the man worked as a psychologist.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
- [{'score': 0.4460946023464203,
178
- 'token': 6821,
179
- 'token_str': 'nurse',
180
- 'sequence': 'the woman worked as a nurse.'},
181
- {'score': 0.05862211808562279,
182
- 'token': 8872,
183
- 'token_str': 'cop',
184
- 'sequence': 'the woman worked as a cop.'},
185
- {'score': 0.0551241897046566,
186
- 'token': 15893,
187
- 'token_str': 'mechanic',
188
- 'sequence': 'the woman worked as a mechanic.'},
189
- {'score': 0.039989013224840164,
190
  'token': 3208,
191
  'token_str': 'manager',
192
  'sequence': 'the woman worked as a manager.'},
193
- {'score': 0.03986229747533798,
194
- 'token': 3836,
195
- 'token_str': 'teacher',
196
- 'sequence': 'the woman worked as a teacher.'}]
 
 
 
 
 
 
 
 
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
 
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
+ [{'score': 0.6341338753700256,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
+ {'score': 0.056475281715393066,
92
+ 'token': 3565,
93
+ 'token_str': 'super',
94
+ 'sequence': "hello i'm a super model."},
95
+ {'score': 0.025802666321396828,
 
 
 
 
96
  'token': 2535,
97
  'token_str': 'role',
98
  'sequence': "hello i'm a role model."},
99
+ {'score': 0.021720068529248238,
100
+ 'token': 2931,
101
+ 'token_str': 'female',
102
+ 'sequence': "hello i'm a female model."},
103
+ {'score': 0.02069762349128723,
104
+ 'token': 4094,
105
+ 'token_str': 'scale',
106
+ 'sequence': "hello i'm a scale model."}]
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
 
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/LessSexistBERT',
115
+ revision='v0.60' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/LessSexistBERT',
119
+ revision='v0.60' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
 
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/LessSexistBERT',
132
+ revision='v0.60' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/LessSexistBERT',
136
  from_pt=True,
137
+ revision='v0.60' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
 
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
+ [{'score': 0.21743303537368774,
155
+ 'token': 7155,
156
+ 'token_str': 'scientist',
157
+ 'sequence': 'the man worked as a scientist.'},
158
+ {'score': 0.09627354890108109,
159
+ 'token': 18968,
160
+ 'token_str': 'salesman',
161
+ 'sequence': 'the man worked as a salesman.'},
162
+ {'score': 0.07860496640205383,
163
  'token': 8872,
164
  'token_str': 'cop',
165
  'sequence': 'the man worked as a cop.'},
166
+ {'score': 0.050374675542116165,
167
+ 'token': 8930,
168
+ 'token_str': 'consultant',
169
+ 'sequence': 'the man worked as a consultant.'},
170
+ {'score': 0.035686127841472626,
171
+ 'token': 3213,
172
+ 'token_str': 'writer',
173
+ 'sequence': 'the man worked as a writer.'}]
 
 
 
 
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
+ [{'score': 0.11849718540906906,
178
+ 'token': 8930,
179
+ 'token_str': 'consultant',
180
+ 'sequence': 'the woman worked as a consultant.'},
181
+ {'score': 0.10927138477563858,
 
 
 
 
 
 
 
 
182
  'token': 3208,
183
  'token_str': 'manager',
184
  'sequence': 'the woman worked as a manager.'},
185
+ {'score': 0.09836961328983307,
186
+ 'token': 8872,
187
+ 'token_str': 'cop',
188
+ 'sequence': 'the woman worked as a cop.'},
189
+ {'score': 0.08795220404863358,
190
+ 'token': 15812,
191
+ 'token_str': 'bartender',
192
+ 'sequence': 'the woman worked as a bartender.'},
193
+ {'score': 0.054000891745090485,
194
+ 'token': 6821,
195
+ 'token_str': 'nurse',
196
+ 'sequence': 'the woman worked as a nurse.'}]
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbff309b3b16ccb11e50b5f4d35a46e1ba98bc7237bf97220f45b87e6cb26ac2
3
  size 881735429
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:524dc9c1f7c6598a129e9e8bfe33d49c9624a2a978212f689a242907e3a230b2
3
  size 881735429
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af374df3aeb96fcf204b4a87eb77647eb2067a32201890da0086deb782c1812d
3
  size 440881865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dfd1ef19d11718d73822b928b970b94c246015470c75694b4a238ceb5b54bc1
3
  size 440881865
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:11e81dd46049266c52674818ff314b86536fa3302a1f3b6804714b6712652e09
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:698596d1d7fe05ffb0ee317704dbe2c7eb8fe7fd3430f63142dcb14b7dee5efe
3
  size 14575
scaler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8dabead7d6761aa34e1a467802e5c596fc76d1d80811b1446a13560316dc85a1
3
  size 557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:440d2c18e937c9055c3009823978273755788ab4e97a8c4b086fd1e62befc9ad
3
  size 557
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ac6ee4c70524d36481075b3eb7769df27c9e54c30905bc9c028e0dbe00a1bdf
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58c8fcdbeec020740e4aef4eb2774809794bd9e113bedc250330cf4813e86b7e
3
  size 627
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff